ORBIT 60 SERIES System Overview

Datasheet

Bently Nevada Machinery Condition Monitoring

137M5182 Rev. T

The Orbit 60 Series Protection and Condition Monitoring System provides one continuous, online monitoring system for both critical and plant-wide applications.

Cyber Secure • Data Isolation

Orbit 60 Series data isolation creates a safe industrial data environment designed to meet IEC 62443-4-2 with world class network security features and segregation of protection and condition monitoring functions.

Modular • Flexible • Scalable

The Orbit 60 Series system is deployable in any combination of rackmounted and distributed hardware. This provides for better alignment of instrumentation to the machinery application.

High Speed Process Data Integration

Next generation architecture facilitates full bi-directional communications with plant control systems over a suite of standard protocols.

Extended Field Wiring Length

With the Orbit 60 Series distributed architecture, connection of multiple chassis through Bridge modules decreases overall electrical installation costs, reduces analog ground loops and noise issues, and moves key maintenance activities further from hazardous areas.

Industry Leading System Capabilities

The Orbit 60 Series supports monitoring of one or multiple machine trains in a single deployment. One System Interface Module (SIM) defines each system and can encompass up to 68 dynamic channels.

Plant-wide • One System

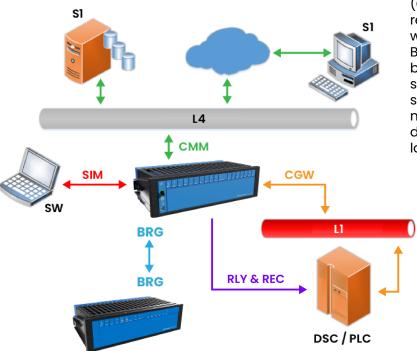
Overview

The Orbit 60 Series Protection and Condition Monitoring System provides a single platform for the continuous online monitoring of both critical and plant-wide applications. The Orbit 60 Series system is deployable in any combination of rack, bulkhead, or panel mounted hardware and distributed hardware, with Bridge modules creating a seamless connection between chassis to make a single system.

The next table gives a general overview of the components that make up the Orbit 60 platform.

Table 1: Component Modules

Syste m Modul es	User Guide (142M90 80)	Chassis	3U Chassis- 19 general purpose slots 6U Chassis- 28 general purpose slots
		Power	Power Interface Module (PIM)
		Processors	System Interface Module (SIM) Protection Processing Module (PPM)
BRG	User Guide (137M48 82)	Expansion/Re mote IO	Fiber Bridge Module


СММ	User Guide (148M90 82)	S1 Interface	Condition Monitoring Module (CMM)
CGW	User Guide (148M90 83)	Comms	Communic ation Gateway (CGW) -Modbus (Ethernet) -EGD (Ethernet)
Input Modul es	User Guide (137M08 04) (168M98 85)	Dynamic 4-channel	Negative Dynamic Input (PAV, PAS, PAA, PAD, KPH) (provides power for negatively powered transducer s)
			Positive Voltage Transducer s Dynamic Input (PVT) (provides power for positively powered transducer s)
		Static 4-channel	Static Displacem ent Input (AC LVDT)
			AC and DC Linear Variable Differential Transducer s

RTD/T C, Proce ss, Discre te	User Guide (157M85 68)	Static 6-channel	RTD/TC Temperatur e (RTD) Process Variable Isolated Discrete Input (PVD)
Outpu t Modul es	User Guide (146M50 32) (180M20 35)	Relays 8-channel	Electro Mechanical Relays (EMR). Solid State Relays (SSR)
		Rec Outs 8-channel	Recorder Outputs (REC)
Displa y and CPU	User Guide (137M07 02)	Display	External Display (EXD)

Orbit 60 System Level Diagram

business network through a cyber-secure access port. The Communications Gateway (CGW) sends (data, status, setpoints) and receives controls (inhibit, reset, trip multiply) with control systems and plant historians. The Bridge Module allows for additional chassis to be connected while still forming a single system. The Recorder Module outputs analog signals proportional to configured measurement values. Relay Modules provide digital output signals based on configurable logic of system statuses.

SIM-System Interface Module

CMM-Condition Monitoring Module

CGW-Comm Gateway Module

RLY & REC-Relay Outputs and/or Recorder Outputs

BRG-Bridge Module

\$1-System 1 Server or Client

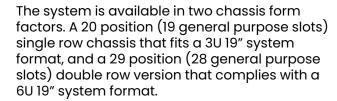
CNFG-Orbit Studio Configuration Software

DCS/PLC-Distributed Control Systems/ Programmable Logic Controller

L1-Unit Network L2 -Control Network L4-Business Network

Figure 1: System Diagram

One System Interface Module (SIM) defines a system of up to 64 dynamic channels, accommodating multiple machine trains and supporting unrestricted synchronous Keyphasors for any channel. The Condition Monitoring Module (CMM) interfaces to the


Orbit 60 Series Chassis

You can flexibly deploy each chassis option with a public facing side (for rack or panel mounts) and a utility side (for wiring connections and bulkhead mounts). Insert modules and make all wiring connections from the utility side. Provisions for the public side of the chassis include status LEDs, configuration port, Config/Run key, and reset button.

Chassis Types

3U, 19-Slot (Bulkhead, Rack, or Panel Mount)

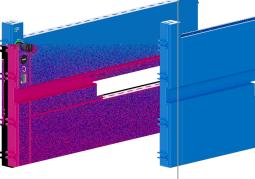
Mounting Options

- Panel Mount Chassis Mounts through a rectangular cutout in a panel and is secured to the panel using clamps supplied with the chassis.
- Rackmount Chassis Mounts the 3U or 6U chassis on 19-inch EIA rails.
- Bulkhead Chassis-Typically mounts into a protective enclosure fastened to a sub panel in3U 19-inch standard, and 6U 19inch standard configurations.

6U, 28-Slot (Bulkhead, Rack, or Panel Mount)

Front Panel Options

The system front panel features system status LEDs and controls. There are two variations of the front panel: a standard panel and a blank panel for the 3U form factor.


Standard Front Panel 3U

Blank Front Panel 3U

The Standard Front Panel Module is for Orbit 60 chassis that have a SIM module installed in slot two to ensure front panel functionality. The Blank Front Panel is built for an Orbit 60 chassis that is installed in a Bulkhead configuration or a Bridged chassis where a second SIM was not added.

Standard Front Panel 6U

Blank Front Panel 6U

The Standard Front Panel Module is for Orbit 60 chassis that have a SIM module installed in slot two to ensure front panel functionality. The Blank Front Panel is built for an Orbit 60 chassis that is installed in a Bulkhead configuration or a Bridged chassis where a second SIM was not added.

Statuses

The Standard Front Panel Module shows the status of the power supplies and the presence and operation of the SIM Module.

Key Switch

This front panel places the system into the run or program mode of

operation using the key switch. When the key is in the RUN position, the ring lights green and configuration changes cannot be made. When the key is in the PRG, or program mode, the ring lights amber and system configuration changes can be made through Ethernet connection to the SIM or front

panel.

Reset

A RESET button is located on the Standard Front Panel. This is used to clear latched alarms, relays, and not OK statuses within the system.

Ethernet

An RJ45 jack provides Ethernet connection to the SIM for external display or configuration tasks from the public side of the system.

System Interface Module

Each Orbit 60 system requires a single System Interface Module (SIM) The SIM provides the user access to manage protection configuration, local display, system-level diagnostics, system LEDs, system contacts, and the system protection fault relay. The SIM occupies one slot and must be adjacent to the Power Input Module (PIM) in the chassis.

The SIM is the access point for configuring and maintaining the system. The module communicates to the Orbit Studio configuration software and transmits the

configuration to other modules in the system. The SIM provides a physical access security feature through a key-lock switch on the public side and a contact on the utility side of the SIM. Either of these controls can be used to secure the system configuration, preventing unauthorized changes.

The SIM has three independently configurable Ethernet ports. Each port can be used for system configuration, system time synchronization, temporary troubleshooting, or an external display.

For additional details, see the System Interface Module Datasheet (142M9054).

Communication Gateway Module

The Communication Gateway Module (CGW) provides information to external hosts including measurements, alarms, statuses, and system controls using standard industrial protocols. The CGW is designed for integration with process control and other automation systems.

The Communication
Gateway module occupies
a single slot and has two
RJ-45 Ethernet ports
supporting Modbus and
EGD protocols.

The Comm Gateway Module includes two

Ethernet ports which provide TCP/IP communications capabilities. The supported industrial protocols are:

- Modbus TCP/IP: Modbus over Ethernet is available for connection to HMI's, unit control systems, or other plant automation equipment. The module can only be configured as a server and supports configurable Modbus addresses within the 40000 address range.
- Ethernet Global Data (EGD): EGD is a GE protocol used on Mark VI and Mark Vie controllers and by GE Programmable Automation Controllers and certain 3rd party automation equipment. Version 3.04 and backward compatibility with previous versions is supported.

For additional details, see the Communication Gateway Module Datasheet (137M0700).

Protection Processing Module

The Protection Processing Module (PPM) serves as the computational engine for the Orbit 60 monitoring system. It extracts all machinery measurements for the protection system and performs alarm determinations. The PPM analyzes signals from transducers, generates measurements and statuses and publishes them to other modules for data collection and external communication. Each PPM occupies a single slot within the system.

Each PPM provides computational capacity for a large number of sensors and can support typical

monitored machine trains. The PPM capacity is a function of the type of processing required on each input. If the system requires more processing than a single PPM can provide, additional PPMs can be added to the system for complex monitoring deployments. For protection systems, redundant PPMs are recommended.

The Orbit Studio Configuration Software provides a System Utilization Calculator to evaluate the remaining capacity of the PPMs in your system. If a PPM processing capacity reaches 90%, a warning indicator is displayed in Orbit Studio software, and it is recommended to add another PPM or two PPMs if the system is redundant.

For additional details, see the Protection Processing Module Datasheet (142M8515).

Condition Monitoring Module

The Condition
Monitoring
Module
(CMM) listens
to all
information
within the
system,
including all

measurement

s, waveforms, digital transducer signals, system controls, status information, system configuration information, process data from external systems, and alarm and events logs. It only listens, with no capability to write, allowing interface to System 1 over the business networks, with no risk to the protection system.

Each module occupies two slots within the system. Placing multiple CMM modules allows the connection of two independent System I clients to the Orbit 60 System. Data is transferred to System I continuously, but in the event the connection is lost, non-volatile storage buffers historical data until the information is off-loaded to the host software. System I can configure the CMM module to extract additional measurements and waveforms from system sensor data. Without System I, the customer can use the CMM module to collect data to diagnose machinery issues when an alarm event occurs in the hardware.

For additional details, see the Condition Monitoring Module Datasheet (145M9028).

Power Input Module

The Power Input Modules (PIM) always reside in a special-purposed slot located in the first slot of the chassis. This slot accommodates two PIMs for redundancy. At least one PIM must power every chassis, and every chassis requires its own PIMs and power sources. Redundant PIMs and power sources are strongly recommended.

The PIM is a half-height module that connects an external power source to the system. Each Orbit 60 Series chassis supports two stacked redundant power input modules. Failure of one power source does not affect the operation if the system uses both power inputs. The PIM employs out-of-range protection for

miswiring, overvoltage, and overcurrent protection for the input power sources.

The PIMs support input voltages ranging from +21 Vdc to +32 Vdc. The most common power source comes from external DIN rail mounted AC/DC +24 Vdc output power supplies. The Instrument Common(IS) and Protective Earth © connections for the system are made at the utility side of the PIM. External redundant power supplies are recommended for the system.

Removal and insertion of a single Power Input Module is supported without disrupting system operation, as long as the other PIM remains installed and connected to its input power source.

Note: The markings on the above image are for illustrative purposes only. The markings on your PIM may vary depending on its version.

For additional details, see the Power Input Module Datasheet (163M5233).

For detailed information on required Power Supply, see associated datasheet (142M8947).

Bridge Module (BRG)

The Bridge Module (BRG) allows for additional chassis to be connected together and form a single Orbit 60 system. All information provided by all modules in all chassis is communicated through the bridge modules and their connections. A maximum of two chassis can be bridged together. Even though a single system can be made up of multiple chassis when using the Bridge Module, bandwidth and processing power limitations are not increased. More modules and channels can exist in a single system physically but the same limit on maximum supported measurements and

channels is imposed.

The Fiber Bridge Module allows for a maximum distance between chassis of 2000 meters and uses a single mode, OS1 or OS2 fiber cable connection. A total of 6dB of attenuation can exist between the ends of the fiber connection, which allows for multiple patch panel connections and fiber repairs to be made without an impact to system communication.

Figure 2: SFP and LC-Type Termination

The links between bridge modules are electrically isolated. This reduces the chance that ground loops between separate chassis are formed. When used for Marshalling cabinets, this also reduces the chance that ground loops between the field wiring and the main system are formed.

Power is not transmitted over the bridge connections. Therefore, each chassis must have its own power supply.

There are no limitations on where different types of modules may be installed in bridged systems. For systems offering protection, bridge modules and their connections are included in the protection path and any faults on them result in the Protection Fault Relay on the SIM being tripped.

Redundant bridging is supported if a second bridge module is installed in each chassis. Failure on one bridge module or the connection between modules will force an automatic transition to the redundant pair of bridges to continue communication.

Each Bridge module occupies a single slot. The module OK LEDs indicate proper module function, and the LINK LEDs indicate a good system communication. The unique Bridge LED indicates the status of the bridge-to-bridge communication link. The bridge-to-bridge communication link is represented as a channel on the module and can be viewed in the bar graph view.

For additional details, see the Bridge Module Datasheet (177M4869).

Dynamic Input Modules

The primary purpose of the Dynamic Input module is to digitize the sensor signal at a rate that completely encompasses the signal content and provides transducer power for various sensors. The Orbit 60 Series Dynamic Input modules are a set of 4-channel input modules available in both negative and positive dynamic input options. The inputs are also used for speed or Keyphasor signals.

The PAV, PAS, PAA, PAD and PVT modules can be configured with

up to TWO SPEED CHANNELS with a maximum speed of 12,000 rpm and maximum speed impulse rate of 12,000 cpm (200 Hz). For more than two speed channels on a single dynamic input card, speeds greater than 12,000 rpm or speed impulse frequencies greater than 12,000 cpm (200 Hz) a KPH Module is needed.

All dynamic input modules that support speed or Keyphasor signals can be configured to have Primary and Backup Speed Source support, to allow for speed redundancy functionality. The module supports backup speed source functionality. When configured, if the primary speed source enters an invalid state, a backup speed channel will be utilized to provide a speed reference for configured synchronous measurements. Compensations for differences in shaft speed and phase reference timings can be configured to

maintain measurement accuracy upon transitioning to backup speed sources.

The Orbit 60 dynamic input modules are designed for use on a broad range of machine trains or individual casings where the sensor point count fits the monitor's channel count and where advanced signal processing is desired. The modules are optimized for intensive signal processing required on complex machinery such as gearboxes, planetary gearboxes, reciprocating compressors, and roller element bearing (REB) machines, as well as offering advanced measurement capabilities on conventional monitoring methods such as radial vibration, thrust position, piston rod monitoring, and casing absolute vibration.

Negative Transducer Input Modules

The following cards work with negative-voltage external sensors offering four variants:

- PAV Negative Dynamic Sampler (Prox, Accel, Velom)
- PAS Negative Dynamic Sampler (Prox, Accel, Seismic)
- PAA Negative Dynamic Sampler (Prox, Accel, Aero)
- PAD Negative Dynamic Sampler (Prox, Accel, DC LVDT)
- KPH High Speed Keyphasor (Prox, Accel, Magnetic Pickup)

Positive Transducer Input Module

The Positive Voltage Transducer (PVT) input module interfaces with industry-standard third-party IEPE sensors, as well as sensors that use a 3-wire (power, common, signal) or a custom 2-wire (A/+ and B/-) positive-voltage interface.

The PVT is the preferred module to use for IEPE sensors, including the Bently Nevada Velomitor (3005xx) and IEPE accelerometers. Using the PVT modules for these sensors improves noise performance of the sensor.

 PVT Positive Dynamic Sampler (Prox, Accel, Velom)

The PVT module is recommended for new Velomitor installations only. Projects using the 190501 Velomitor CT or retrofits that reuse other existing Velomitor sensors should use the PAV module unless the user can verify the sensor power limits are appropriate for existing Velomitors.

Connectors

The Dynamic Input module uses an ix Industrial connection to provide access to four buffered transducer output (BTO) connectors for each of the dynamic channels, with short circuit protection. The ix Industrial connection is available on the public and utility side of the module.

For additional details, see the Dynamic Input Modules Datasheet (137M0698).

Keyphasor Input Module

Unlike previous systems, the Orbit 60 Series system supports Keyphasor configurations for any dynamic input channel through the PAV, PAS, PAA, PAD, and PVT input modules. For high-phase accuracy applications (over 12,000 rpm) the **Keyphasor Input Module** must be used. The input speed limit is 120,000 rpm and can accept input speed signals up to 1,200,000 cpm (20 kHz). Each Keyphasor Input Module can accept up to four speed inputs. Input configurations to this module can also support Acceleration, Differential Expansion, Radial Vibration, and Thrust inputs. The Keyphasor input Module occupies a single slot.

Although the system allows the user to configure channels on the Keyphasor Input Module to serve as non-speed input types as described above, there will be a decrease in accuracy on these measurements when compared to PAV, PAS, PAA, PAD, and PVT modules. The accuracy is decreased from 1% of Full Scale Range to 2% of Full Scale Range on all 3-wire (non-speed) connections from 0 to 40 kHz. These non-speed inputs also cannot be utilized in SIL applications. The Keyphasor Input Module can only be utilized in SIL applications when configured for speed inputs.

Any channel on the module can be configured as a once-per-turn Keyphasor or a multiple-

event-per-turn speed signal from a rotating shaft or gear used to provide a precision timing measurement. The Keyphasor Input Module Speed Channels can be configured to support Recip Multi-Event Wheel speed signals. The Keyphasor Input Module works with the following transducers:

- Magnetic pickup
- 3-wire Prox
- 3-wire Accel

The 2-wire input connection provides a galvanically isolated, hi-impedance input which primarily supports magnetic pick-up speed sensors. The isolated input eliminates potential ground loops that can occur when speed sensors are shared between the vibration system and other instrumentation.

The Keyphasor Input Module provides a buffered transducer output for each channel. Within Orbit Studio software, each output can be configured within Orbit Studio Software to be either a true analog signal representative of the input or a conditioned/processed digital TTL signal replicating machine speed and maintaining phase with the input signal.

The Keyphasor Input Module can accept a recip multi-event wheel signal, which is used to track shaft rotation more precisely during a revolution. This 13 tooth gear has a unique tooth used to indicate the crank angle reference for specific recip measurements.

The module supports backup speed source functionality. When configured, if the primary speed source enters an invalid state, a backup speed channel will be utilized to provide a speed reference for configured synchronous measurements. Compensations for differences in shaft speed and phase reference timings can be configured to maintain measurement accuracy upon transitioning to backup speed sources.

For additional details, see the Keyphasor Input Module Datasheet (157M8566).

AC LVDT Input Module

The Orbit 60 Series AC LVDT Input Module provides inputs to interface with four AC Linear Variable Differential Transformers for position measurements. The module's primary use is the measurement of case expansion and valve position. The AC LVDT input module occupies a single slot.

The four AC LVDT configured channels can connect to a:

- 5-wire AC LVDT
- 6-wire AC LVDT

Note: To configure the 6wire, 3 and 4 pins are

shorted together.

The module's OK LED indicates when the module is functioning properly, and the LINK LED indicate when the module is communicating to the rest of the system. Four channel status LEDs, located on the utility side of the module, indicate that each AC LVDT sensor is connected and functioning properly.

For additional details, see the AC LVDT Input Module Datasheet (173M3153).

Temperature Input Modules

TC/RTD Temperature Module

The primary purpose of temperature modules is to interface to the temperature transducers and convert the signal into a digital representation. These modules condition and digitize the inputs at a rate that completely encompasses the signal content and allows for removal of typical noise sources.

The Orbit 60 Series TC/RTD Temperature Input Modules provide six channels of either Thermocouple (TC) or Resistive Temperature Detector (RTD) temperature input sensors.

Each channel of the Orbit 60 Series TC/RTD input module is individually configurable for sensor type and range using Orbit Studio configuration software.

The RTD/TC inputs reference the internal system ground, and for this reason, should only connect to transducers isolated at the sensing end.

Sensor Types

TC sensors - The thermocouple configured channels provide cold junction compensation for any J, K, E, or T Type Thermocouple.

RTD sensors - The RTD configured channels can be connected to the following:

- 3-Wire 100 Ohm Platinum 0.00392 RTD
- 3-Wire 100 Ohm Platinum 0.00385 RTD
- 3-Wire 10 Ohm Copper RTD
- 3-Wire 120 Ohm Nickel RTD

For additional details, see the Temperature Module Datasheet (137M0706).

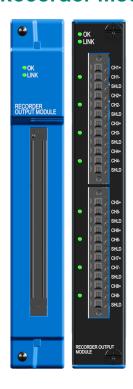
Isolated Process Variable / Discrete Input Module (PVD)

The Orbit 60 Series **Isolated Process** Variable and Discrete (PVD) Input module processes machinecritical parameters such as pressure, flow, temperature, and levels that merit continuous monitoring. The module conditions and digitizes the signals so the result can be compared with user-programmable alarm setpoints. The user can program the PVD module using the **Orbit Configuration** software to perform current, voltage or discrete input measurements. This module provides discrete inputs for

essential operational commands, such as Trip Multiply for machine start-up and Alarm Inhibit.

The monitor accepts +4 to +20 mA current inputs or any proportional voltage inputs between -10 Vdc and +10 Vdc, in addition to monitoring "dry" or "wet" contacts from a sensor, switch, or relay.

Primary purposes of the PVD Module:


- Continuously process input from monitored parameters to be compared against configured alarm setpoints to drive alarms for machinery protection.
- Allow provision of essential machine information, such as Trip Multiply for machine startup and Alarm Inhibit for both operations and maintenance personnel.

These modules occupy a single slot. The module OK LEDs indicate proper functioning, and the LINK LEDs indicate good system

communication. Six Channel Status LEDs on the utility side of the module indicate a connected sensor in OK condition.

For additional details, see the Process Variable and Discrete Input Module Datasheet (145M9027).

Recorder Module

The recorder output module is a 8channel single slot width module that provides an analog output signal based on a processed measurement from any of the proportional measurements within the system. The output of the recorder output channel is proportional to the associated measurement value within the measurement's full scale range.

The recorder output module is software-

selectable to operate in several output modes, providing the following analog output signal ranges:

- 4 to 20 mA
- 1to 5 V
- 0 to 10 V

When configured for a 4-20 mA output, the recorder channel supports the extended output range of 3.8 mA to 20.5 mA to align with the NAMUR NE43 standard.

These differing signal ranges can accommodate connections to various interfacing equipment designed to consume and interpret the proportional analog signals.

The recorder output module provides analog outputs for any proportional signal measurements available within the Orbit 60 system including the following examples:

- Processed Vibration measurements (Direct, IX Amplitude, IX Phase, etc.)
- Temperature measurements
- · Position measurements

The recorder output channels' configuration includes several options for clamp output levels, providing an indication of an invalid health status of the associated measurement. The system will also attempt to output the configured clamp signal when any fault within the Recorder Output channel or output load is detected.

The configuration also includes the option to include Recorder Output channels within the protection path so that detected faults within the Recorder module or wiring can be annunciated through Protection Fault relays. (See SIL User Guide 134M0398 for additional details when using the Recorder Output channels in a SIL application.)

For additional details, see the Recorder Output Module Datasheet (137M0704).

Relay Modules

Relay modules may be

programe

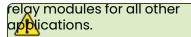
d to actuate based on alarm conditions defined in other modules. Use standard logic elements (True AND, Normal AND, OR and NOT) to combine various alarms and statuses (e.g. OK statuses, Bypass, Protection State, Inhibit, Attention, Protection Fault, etc.) into relay activation conditions. Orbit Studio is used to program the voting logic.

Relays can operate as a system or group protection fault relay, if programmed to do so, especially when the protection fault relay on the SIM does not provide adequate granularity of system health-typically for multiple machines in one system.

Pairs of relays within the module function as a single Double-Pole, Double-Throw relay when appropriately configured. Both relay types are available for SIL system implementation. See Orbit 60 SIL User Guide (134M0398) for additional details and design considerations.

Bently Nevada sources and verifies the highest quality components on the market. However, component failures can occur and therefore redundancy is mandatory for SIL/critical protection applications. It is highly recommended installations follow BN Best practice by deploying redundant relays on two independent relay modules for all other applications.

Electromechanical Relay (EMR)


This relay drives a load directly, or through, an interposing relay. This module takes two slots. It features **8 Epoxy Sealed, Single-Pole Double-Throw Electromechanical Relays.**This module supports an AC voltage range of 5-250 Vac for loads of 100 mA to 4 A. The module also supports DC voltages and loads of 5-30 Vdc at 4 A.

Solid State Relay (SSR)

This relay connects to an external system's discrete

input for low current communication. It occupies a single slot and features **8 Epoxy Sealed, Single-Pole Double-Throw Solid-State Relays.** This module supports secondary voltages from 1 Vdc up to 125 Vdc and loads of 0.01 to 125 mA.

For additional details, see the Relay Modules Datasheet (137M0699).

Bently Nevada sources and verifies the highest quality components on the market. However, component failures can occur and therefore redundancy is mandatory for SIL/critical protection applications. It is highly recommended installations follow BN Best practice by deploying redundant relays on two independent

Input Module Sensors and Channels

Sensor Type Supported	Chann el Type		Ň	/na Mod 4 cl	ule	Ту			Sta Inp Mod e Ty (6 cha	ut dul /pe S
		P A V	P A S	P A A	P A D	P V T	K P H	A C LV DT	Te m p	P V D
Proximitor (3-wire)	Differe ntial Expan sion, Radial Vibrati on, Speed, Thrust, Recip Piston Rod	Х	X	X	X	Х	X			
Magnetic Pickups	Speed						Х			
Accelero meter (3-wire)	Accele ration ¹ , Recip Impuls e Accele ration	X	X	X	X	X 2	X			
Charge Amplifier (3-wire)	Accele ration ¹	Х	Х	X	X 2	X 2	Х			
BN 165855 Cylinder Pressure Transduc er	Recip Cylind er Pressu re					Х				
Interface Modules (4-wire)	Accele ration ¹			Х						

Sensor Type Supported	Chann el Type								Sta Inp Mod e Ty (6 cho	ut dul /pe S
		P A V	P A S	P A A	P A D	P V T	K P H	A C LV DT	Te m p	P V D
High- Temp Accel (4-wire)	Accele ration ¹			х						
High- Temp Accel (3-wire)	Accele ration ¹	х	x	х	х	X 2	х			
Negative Biased Constant Current (2- wire)	Accele ration ¹	X								
IEPE Positive Constant Current (2- wire)	Accele ration ¹ , Recip Impuls e Accele ration					X				
High- Temp Velocity	Velocit y ¹	Х	Х	Х		X 2				
Negative Biased Constant Current (2- wire)	Velocit y ¹	x								
Velomitor ® (2-wire)	Velocit y ¹	X 2, 3				X 2, 3				
Velomitor CT	Velocit y ¹	X 2, 3								
Seismopr obe (2- wire)	Velocit y ¹		Х							

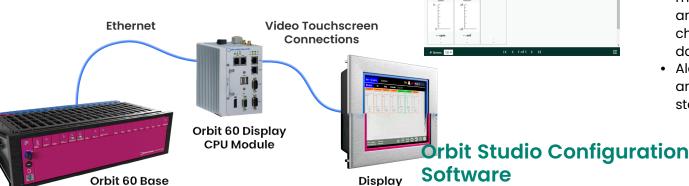
Sensor Type Supported	Chann el Type				Type Module Type Ir (4 channels) M e		Sta Inp Mod e Ty (6 cho	ut dul /pe S		
		P A V	P A S	P A A	P A D	P V T	K P H	A C LV DT	Te m p	P V D
IEPE Positive Constant Current (2- wire)	Velocit y ¹	X 3				X				
Amplifier/ Interface Modules	Dyna mic Pressu re			Х						
Pressure Transduc ers	Dyna mic Pressu re					Х				
DC LVDT	Valve Positio n & Case Expan sion				X					
AC LVDT	Valve Positio n & Case Expan sion							x		
3-wire RTD	Tempe rature								Х	
TC-Type J, K, E, T	Tempe rature								Х	
4-20 mA Transmitt er, ±10 V Sensor	Proces s Variab le									X

Sensor Type Supported	Chann el Type		Ň	/lod	mic lule han	Ту	put pe ls)		Sta Inp Mod e Ty (6 cha	ut dul /pe inn
		P A V	P A S	P A A	P A D	P V T	K P H	A C LV DT	Te m p	P V D
Dry or Wet Contact, TTL Logic	Discret e Chann el									Х

¹ Designates the ability to integrate these measurements to provide additional measurement types.

³ PVT modules are recommended for new sensor installations only. Projects using the Velomitor CT or retrofits that reuse existing sensors should use PAV or verify sensor power limits.

The PVT is only for positively biased sensors.


The PVT module is generally recommended because of its positive bias and higher supply current. However, for Orbit 60 installation retrofits using existing Velomitor® sensors, the existing sensors are recommended to be used with PAV modules and configured as custom transducers, unless it can be verified that the sensors are compatible with the PVT with its higher output current.

 $^{^{\}rm 2}$ These sensors can be configured using a Custom transducer configuration.

External Display

The external display utilizes an industrial computer connected to the SIM via Ethernet. The computer and display placement varies based on application needs. The 10.4", 15", and 21.5" VGA touchscreen displays provide excellent viewing quality for industrial applications. The 10.4" display is suitable for use in hazardous area locations across the world. The 15" display is certified for hazardous areas for North America only. The 21.5" display is intended for non-hazardous (safe) area applications only.

Orbit Display Software

By default, a bar-graph screen shows all measurements. The Orbit Display software can show bar graphs, alarm lists, event lists, and statuses. Up to 12 Orbit 60 systems can be viewed on one display.

- Systemevent list
- Alarmevent list
- All module and channel data
- Alarm and OK status

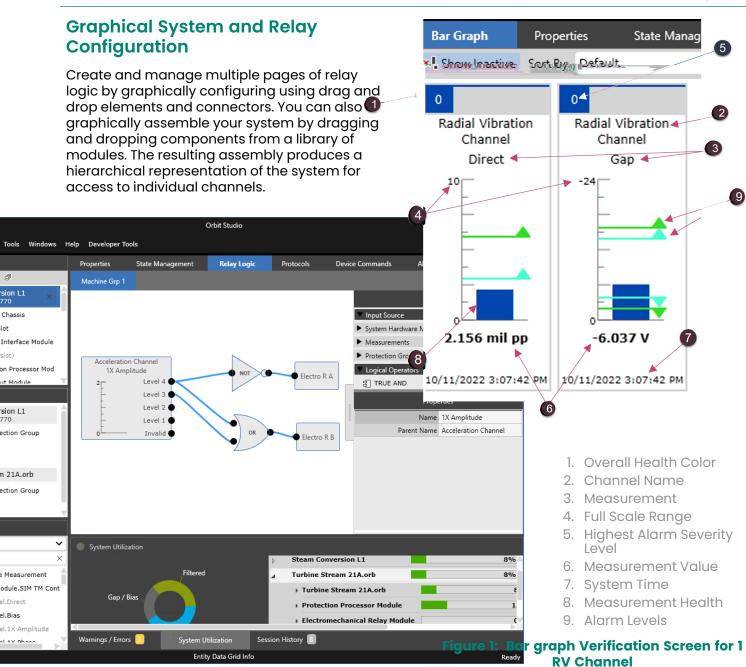
Display Mounting Options

with SIM

You can mount the displays in a remote enclosure, panel, or rack.

- **10.4" Display** Can be mounted in a rack, panel, and enclosure.
- **15" Display** Can be mounted in a rack, panel, and enclosure.
- 21.5" Display Can be mounted in a rack or panel.

Bently NevadaIndustrial Computer


The Orbit 60 Series Industrial Computer is certified for hazardous environments when installed in a NEMA3 or NEMA4 enclosure. The industrial computer communicates with an Orbit 60 Base SIM module to gather and output data to supported displays. The small form factor of 5.2 x 4.8 x 3.4 (132 x 122 x 87 mm) enables DIN-rail mounting.

The Orbit Studio software configures Orbit 60 chassis, modules, channels, measurements, setpoints, relays, and many other aspects to protect plant assets. It is also the primary method used to verify systems. For more information, see Orbit Studio online help or Orbit Studio Configuration Software User Guide (137M0696).

Multiple Systems Configuration

You can connect multiple systems from a single Orbit Studio client session. This opens multiple offline configuration files alongside actively connected systems allowing for easy cross-referencing across systems, while enabling security through user-based permissions. You can copy and paste modules and channels across systems and configuration files, as well as send and retrieve configurations for multiple systems at once.

Current Values and Loop Check

View current value data across all channels within a system. You can use the bar graphs and tabular lists to complete loop checks from channels throughout the system.

To configure the Orbit 60 system, refer to the Orbit Studio online help.

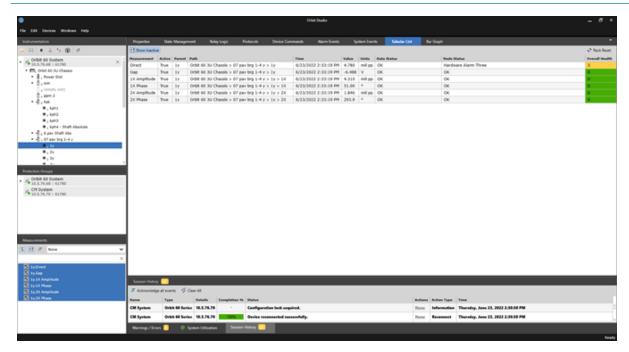
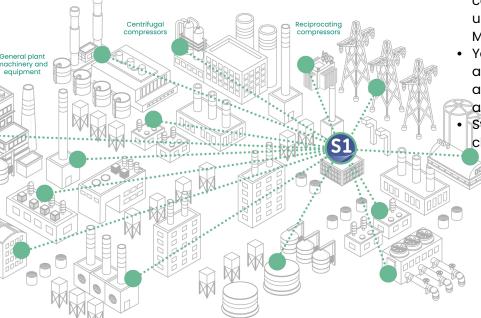


Figure 2: Tabular List Verification Screen for 1

RV Channel

System 1 Integration

Offering plant-wide condition monitoring insights to reduce risk, increase productivity, and minimize unplanned downtime, System 1 streamlines decision-making processes by bringing machine data into a single platform, providing clarity and context to your operations and enterprise. Harnessing the power of Bently Nevada's decades of machinery research and advanced diagnostics expertise, this powerful tool is a key component of successful digital transformation in any industrial facility. By combining its Connectivity, Analytics, and Visualization capabilities, System 1 is the premier Edge historian and condition monitoring platform among industrial operators.


Take full advantage of System 1 Condition Monitoring Software in conjunction with Orbit 60 Series for complete monitoring and advanced diagnostics for all machine types, including roller-element bearings. Use the Orbit 60 Series Condition Monitoring Module (CMM) for a read-only access point to provide a cyber-secure approach for obtaining data through the business network or other systems.

Bently Nevada has a rich heritage in helping customers solve industrial maintenance challenges that is over 60 years strong. Through user research in 25 countries with more than 500 end users, we have studied our customers' team dynamics, site processes, and technology suites to determine how System 1 can best support plant-wide machinery management. The resulting platform is the most comprehensive and user- intuitive condition monitoring solution ever developed.

System 1 Support for Orbit Channels and Measurements

The Orbit 60 Condition Monitoring Module (CMM) interfaces with System 1. Data is transferred from Orbit 60 to System 1 continuously.

- You can view Orbit 60 alarms and system health events in System 1.
- When a measurement triggers an alarm in Orbit 60, the alarm and system events are visible in System 1.
- Alarm and transient data configured in System 1 Data Collection States and Points are also applied to Orbit measurements.
- Orbit measurements can be used to configure triggers for state events (Start up/Shutdown, Running, Slow Roll, or Machine Off) in System 1.
- You can use replication, OPC/DA (data access), and OPC/UA (unified architecture) to export Orbit channels
 and measurements from System 1.
- System 1 Audit files contain Orbit channels and measurements.

Specifications Orbit 60 System

Full-Load Chassis				
Power Consumption				
3U 19" full load	Typical: 120 Watts Maximum: 180 Watts			
6U 19" full load	Typical: 160 Watts Maximum: 300 Watts			

1

The Orbit 60 Series system was qualified with the power supplies listed in datasheet 142M8947. Use of a reduced wattage power supply may result in changed behavior under fault conditions.

Characteristics	8
3U Current Draw:	8.6 Amps Max
6U Current Draw:	14.3 Amps Max
Voltage Input	+21 to +32 Vdc
Out of Range Protection	An undervoltage does not harm the PIM.
	An overvoltage causes the replaceable fuse to open.
Chassis Loading	No minimum chassis loading is required.
Outputs	
Power OK LED	Input Voltage to PIM is within acceptable levels
Weight	
3U 19" Chassis	32 lbs (14.5 kg)
6U 19" Chassis	64 lbs (29.03 kg)

System Physical Dimensions

3U Standard Chassis (19")

See System Modules User Guide (142M9080) for detailed dimensions with illustrations.

Width	19" (48.26 cm)
Height	5.2" (13.21 cm)
Depth	9.67" (24.56 cm): panel and rack mount
	9.76" (24.79 cm): bulkhead mount

6U Standard Chassis (19")

See System Modules User Guide (142M9080) for detailed dimensions with illustrations.

a difficitions with mastrations.
19" (48.26 cm)
10.45" (26.5 cm)
Depth values includemounted power supplies.
14.54" (36.94 cm): panel and rack mount
14.64" (37.18 cm): bulkhead mount
e Module
0.8" (2.03 cm)
5.2" (13.21 cm)
9.67" (24.56 cm)
de Module
1.64" (4.17 cm)

5.2" (13.21 cm)

9.67" (24.56 cm)

Height

Depth

Environmental Limits (All Modules)

Environmental Limits

Chassis Operating Temperature Range 3U Chassis: -30°C to +70°C (-22°F to 158°F)

Ņ

<u>6U Chassis:</u> -30°C to +65°C

(-22°F to 149°F)

Ņ

(indoor use only)

(!)

Temperatures over 50°C (122°F) require forced air convection with a minimum airspeed of 0.5 m/s.

Module Temperature Rating Certification -30°C to +70°C (-22°F to 158°F)

When using a Bridge module, temperatures over 58°C (136°F) require forced air convection with a minimum airspeed of 0.5 m/s.

You must still meet the Chassis Operating Temperature Range defined above.

Storage Temperature Range	-40°C to +85°C (-40°F to 185°F)
Relative Humidity	0% to 95% rH non-condensing operating and storage
Vibration	Without Isolators: 0 g to 0.35 g @ 57-500 Hz
	With Isolators: 0 g to 5 g @ 57-500 Hz

Environmental Limits 2" Incline Drop Shock < 2000 m (6,562 ft) **Altitude** Higher altitudes are possible but are site specific applications. **Contact Bently** Nevada support if you require higher altitudes. Pollution Pollution Degree 2 Degree Installation Category II Category

Verify that temperature ratings on the wiring cables match the operating temperature range.

CAUTION

LOCATION TEMPERATURE AND HUMIDITY

While the system has been tested and capable of achieving the design life when operating in environments up to 70°C, whenever operating any electronics system in elevated humidity or temperatures exceeding 40°C, adding environmental controls maximizes the operational life of the system.

System Interface Module

System Interface Module (SIM)				
Power Consumption				
Typical	7.6 Watts			
Maximum	10.9 Watts			
System Conta	cts			
4 contacts on	Trip Multiply			
utility or rear side	Alarm Inhibit			
	System Reset			
	Configuration Lock			
Voltage In	24 V max			
Current rating	<1 mA to 125 mA			
Protection Fault Relay				
Relay Type	Solid State, Single-Pole, Double Throw			
Voltage	1 Vdc to 125 Vdc			
Current	0.01 to 125 mA			
Communicatio	ns			
1 Ethernet port-public side	Independent Ethernet ports 1000/100/10 Base-T Auto- negotiation			
2 Ethernet ports-utility side				
Connector	RJ-45			
Supported	NTP time sources			
Connections	Orbit Config-System configuration			
	Orbit Display-Local system display			
Cable Length	100 meters (328 feet) max			

System Interface Module (SIM)

Cyber Security

- Aligned to the IEC 62443-4-2 standard.
- Encrypted communications using latest TLS standards.
- PKI implemented signed firmware images to facilitate secure boot and trusted firmware updates.
- Device identity management uses certificates for trusted connections.
- Configure user, roles and rights account management.
- Uses physical Run/Program control

System Interface Module (SIM) **Controls and Contacts RST** Used to clear all latched alarms and NOT OK statuses **Reset Contact** across the system. LED or Button indicates reset contact closed.1 SAI Used to inhibit all alarms within the system. LED System Alarm indicates the state of the Inhibit Contact alarming functions within the system. TM Used to place the system in **Trip Multiply** Trip Multiply. LED indicates Contact that the system is in Trip Multiply mode.

System Interface Module (SIM)

LOCK

Configuration Lock Contact or Key **PRG** - Allows configuration changes to be made to the system. Amber LED indicates the system is in Program mode.

RUN - Locks the system, blocking configuration changes. Green LED indicates the system is in Run mode. 2

NO, ARM, NC Protection Fault Relay

NO, ARM, and NC contacts are all used to wire the output to an external receiver. A green LED indicates that all the protection functions within the system are operational. Red indicates the protection path is faulted and the Protection Fault Relay is in a tripped state (not energized).

¹ Performed by either closing the contact on the module or pressing the button on the front panel.

² Performed by either closing the contact on the module or setting the key on the front to the RUN setting on the front panel.

Communications Gateway

Communications Gateway (CGW) **Power Consumption** Maximum 10.2 Watts Typical 6.8 Watts Data Communications 2 Ethernet ports-Independent Ethernet utility or rear side ports 1000/100/10 Base-T **Auto-negotiation** RJ-45 Connector Cable Length 100 meters (328 feet) max **Updated Rate** 50 ms Modbus 20 ms FDG **LEDs** Indicates when the Module OK LED module is functioning properly Indicates when the System Communication module is communicating **IFD** to the rest of the system **Physical Characteristics** Required Rack 1 Slot Space

Protection Processor Module

Protection Processor Module (PPM)			
Power Consumption			
Typical	6.1 Watts		
Maximum	9.7 Watts		

Protection Processor Module (PPM)

Channel Types

- Acceleration
- Case Expansion
- Differential Expansion
- Dynamic Pressure
- Process Variable
- Radial Vibration
- Recip Cylinder Pressure
- Recip Impulse Acceleration
- Recip Piston Rod
- Recip Velocity
- Speed
- Temperature
- Thrust
- Valve Position
- Velocity

Measurements and Signal Processing			
1X/2X/nX Amplitude and Phase	In a complex vibration signal, notations for signal components having frequencies equal to fractions of rotative speed. Also called subharmonic and subsynchronous.		
Amplitude Extraction	Amplitude Extraction measurements can be based on synchronous or asynchronous sampling.		

Protection Processor Module (PPM)

Average Piston Position This trended variable measures the average of the physical distance between the face of the proximity probe tip and the observed rod with respect to the zero position multiplied by the average correction factor. This measurement is computed over the full rotation of the compressor crankshaft.

The system computes average piston position from a configured reference value (zero position) extrapolated from the measurement of the piston rod movement to piston movement inside the cylinder.

Bandpass

Adjustable lowpass and highpass corners based on the frequency range of the transducer.

Bias

Applicable to Acceleration and Velocity sensor inputs. The DC voltage used by the system as a bias for the transducer. Can be used as a diagnostic tool for evaluating system integrity. Note: The bias voltage measurement contains no information about the condition of the machinery being monitored. It is provided only for monitoring system diagnostics.

Protection Processor Module (PPM)

Case Expansion

A measurement of the axial position of the machine casing relative to a fixed reference, usually the foundation. The measurement is typically made with a Linear Variable Differential Transformer installed on the foundation at the opposite end of the machine from the point where the casing is attached to the foundation. Changes in casing axial position are the result of thermal expansion and contraction of the casing during startup and shutdown.

Protection Processor Module (PPM)

Complimentary
Input DE
(Composite of
Differential
Expansion
Channel
measurements)

Complementary Input Differential Expansion (CIDE) is a method of measuring Differential Expansion. Two proximity probes are mounted and gapped so that the measurement range is twice the range of a single proximity probe. One probe is in its linear range during the first half of the measurement range and the second probe is in range during the second half of the measurement range. The monitor is configured so that it will switch from one probe to the other probe when the gap voltages are at the switch point. The switch point is termed the Cross Over Voltage. The monitor uses the Direct static value from each probe to determine the overall expansion value. The overall expansion value is termed the Composite static value and it is the value used for machine protection and machinery management information.

Compression Ratio

This measurement is the ratio of the indicated discharge pressure to the indicated suction pressure.

Crank Angle

This trended variable measures the point in the crankshaft rotation where the maximum position magnitude occurs.

Protection Processor Module (PPM)

Degrees of Rod Reversal

This measurement determines the minimum amount of rod load reversal required to properly lubricate the crosshead pin. Several forces such as gas load, inertial load, and friction load act upon the crosshead pin. When the gas load is positive, the crosshead pin is under tension, and when the gas load is negative, the crosshead pin is under compression. The degrees of rod reversal is the smaller value of tension or compression.

Differential Expansion

The measurement of the axial position of the rotor with respect to the machine casing at some distance from the thrust bearing. Changes in axial position relative to the casing affect axial clearances and are usually the result of thermal expansion during startup and shutdown. The measurement is typically made with a proximity probe transducer mounted to the machine casing and observing an axial surface (e.g., collar) of the rotor.

Protection Processor Module (PPM)

Protection Processor Module (PPM)			
Direct	Data or a signal which represents the original transducer signal without significant filtering. Sometimes called unfiltered, raw, all pass, or overall data or signal. Bently Nevada signal processing does some filtering to create "direct" data, but it still contains broadband frequency information.		
Discharge Pressure, Indicated	For the head-end chamber, the indicated pressure at TDC (top dead center at 0°) is the indicated discharge pressure. For crank end chamber, the indicated pressure at BDC (bottom dead center at 180°) is the indicated discharge pressure.		

Protection Processor Module (PPM)

Dual Ramp (Composite)

Dual Ramp Differential Expansion is a method of measuring Differential Expansion and is a subset of a number of measurement methods, generally termed Ramp Differential Expansion, which make use of ramps to measure axial position. Two proximity probes observe different ramps. The two ramp sections must be mirror images with the same ramp angle. The two probes mount on the same side of the rotor and in the same axial plane. The monitor uses the direct static values from both channels to measure axial position and compensate for the effect of radial movement. The compensated result is termed the Composite static value and is the primary value used for machine protection and machinery management information.

Eccentricity

The radial displacement of the rotor journal centerline from the geometric center of a fluid lubricated bearing. Eccentricity is measured while the turbine is on slow roll (1 to 240 RPM below the speed at which the rotor becomes dynamic and rises in the bearing on the oil wedge) and requires special circuitry to detect the peak- to-peak motion of the shaft.

Protection P	rocessor Module (PPM)		Protection Pr	ocessor Module (PPM)
Gap		The - rms	Integration/RMS	Available for Velocity and Acceleration channels to be applied to Direct, Bandpass, 1X, 2X, nX an SMAX measurements.
expressed in terms of displacement (mils, micrometres), or in te of voltage (millivolts) Standard polarity	micrometres), or in terms of voltage (millivolts). Standard polarity		Maximum Pressure, Indicated	The highest pressure over the complete revolution for a chamber. No filtering or other processing is applied.
Instantaneous	convention dictates that a decreasing gap results in an increasing (less negative) output signal. This trended variable measures the position of the rod with respect to the zero position times the correction factor when the rod is in its stroke position described by the configured trigger angle position. The system computes the instantaneous piston position from the configured reference value (zero position) extrapolated from the measurement of the piston rod movement to piston movement inside the cylinder.	-	Minimum Pressure, Indicated	The lowest pressure over the complete revolution for a chamber. No filtering or other processing is applied.
Piston Position			Non-Standard Single Ramp DE (Composite)	Nonstandard Single Ramp Differential Expansion is a method of measuring Differential Expansion and is a subset of a number of measurement methods, generally termed Ramp Differential Expansion, which make use of ramps to measure axial position. Two proximity probes observe the same ramp. The two probes are mounted on opposite sides of the rotor (180 degrees apart). The monitor uses the direct static values from both channels to measure axial position and compensate for the effect of radial movement. The compensated result is termed the Composite static value and is the primary value used for machine protection and machinery management information.
Instantaneous Probe Gap	This trended variable measures the voltage representing the physical distance between the face of the proximity probe tip and the observed rod when it is in its stroke position described by the configured trigger angle position.			

Protection Processor Module (PPM)		Protection Processor Module (PPM		
Number of Reverse Rotation	Valid when the machine is spinning backwards and has exceeded the reverse speed setpoint, counting revolutions.	Position Angle		This trended variable measures the angle made by the vector representation of the maximum position magnitude referenced
Peak Crosshead Pin Compression and Tension	Several forces such as gas load, inertial load, and friction load act upon the crosshead pin. When the gas load is positive, the crosshead pin is under tension, and when the gas load is negative, the crosshead pin is under			from the top of the piston rod in a clockwise direction when viewed from the crank end towards the cylinder. The top of piston rod is identified as 0° position angle. Position Angle provides an
	compression. Peak Crosshead Pin Tension is the largest value of the combined load of these forces when the crosshead pin is under tension. Peak Crosshead Pin Compression is the smallest value of the combined load when the			indication of the direction of rod movement relative to bore center. For a single vertical probe, this position angle will be 0° when piston rod is above bore center, or 180° when piston rod is below bore center.
	crosshead pin is under compression.		Position Magnitude	This trended variable measures the maximum displacement of piston rod relative to the calculated hot bore center reference.
Position				
			The cylinder bore geometric center is calculated based on piston material, expected operating temperatures, and measured bottom and top piston to cylinder wall clearances.	
			Process Variable	The Process Variable Channel accepts current and voltage proportional inputs from a transmitter for the purpose of monitoring process variables (temperature, pressure, flow, etc.).

Protection Pr	ocessor Module (PPM)
Reverse Peak Speed	Valid when the machine is spinning backwards and has exceeded the reverse speed setpoint, storing the highest achieved reverse speed.
Reverse Speed	Valid when the machine is spinning backwards. This measurement behaves like a typical speed measurement.
Rotor Acceleration	Rotor acceleration is a ramp rate of a rotor (in rpm / min) as its speed increases from zero rpm to the machine's running speed value.
Shaft Absolute	Shaft Absolute vibration is the measurement of the shaft motion referenced to free space. It is measured using a vector summation of shaft relative motion and bearing seismic motion. A proximity sensor and an integrated velocity sensor must be mounted at the same location. Shaft Absolute Direct and IX measurements are available on Radial Vibration channels.
SMAX	Measurement of the maximum excursion from an axial position.
Speed	Measurement of the rate of rotational motion.

Protection Processor Module (PPM)

Standard Single Ramp DE (Composite)

Standard Single Ramp Differential Expansion is a method of measuring Differential Expansion and is a subset of a number of measurement methods, generally termed Ramp Differential Expansion, which make use of ramps to measure axial position. One proximity probe, termed the ramp transducer, observes a ramp and the other probe, termed the flat transducer, observes the shaft. The two probes are mounted on the same side of the rotor and in the same axial plane. The ramp transducer measures axial position and the flat transducer measures radial position. The monitor uses the flat channel Direct static value to compensate the ramp channel Direct static value for the effect of radial movement. The compensated result is termed the Composite static value and is the primary value used for machine protection and machinery management information.

Protection Pr	ocessor Module (PPM)
Suction Pressure, Indicated	For the head-end chamber, the indicated pressure at BDC (bottom dead center at 180°) is the indicated suction pressure.
	For crank end chamber, the indicated pressure at TDC (top dead center at 0°) is the indicated suction pressure.
Valve Position	Measurement of the percentage open or closed of a valve.
Zero Speed	A channel whose transducer is used to monitor the shaft rotational speed of a large rotor machine in revolutions per minute (under 100 rpm) below which the turning gear engagement can safely occur. Continuous shaft rotation during machine shutdown is imperative to prevent shaft bow that could lead to possible machine damage during startup. The channel receives a signal from a transducer whose output frequency is proportional to the speed of a rotor.
Alarming	
Alarm Time Delays	100 ms to 60 sec for vibration and position measurements. 1 sec to 60 sec for speed measurements.
Setpoints	Four setpoint levels available at a each measurement.

Protection Processor Module (PPM)	
Protection States	Up to 32 Protection States that be controlled by Discrete contacts or configurable measurement ranges. Alarm setpoints are adjustable for different Protection States.

Accele	eration Channel
Direct/Bandpass	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Integration	Option allowed
Units	g pk
	g rms
	m/s^2 pk
	m/s^2 rms
Integrated Units	in/s pk
	in/s rms
	mm/s pk
	mm/s rms
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner	0.0626-40,000 Hz
Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.
High Pass Poles	1, 2, 4, 6, 8

Acceleration Channel

High Pass Corner Frequency User can set values below the low pass frequency.

Range of 0.0625 to 39,999

Frequency response of the transducer needs to be considered.

Bias	
Units	V
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01-5.00 Hz
1X and 2X (Defaul	t Variables)
Accuracy (Amplitude)	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz±2% maximum up to 40 kHz
Accuracy	Keyphasor Source:
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)
Integration	Option allowed
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Minimum Speed	50 rpm

Acceleration Channel Maximum Speed Keyphasor Source: High Speed keyphasor = 120,000 rpm Dynamic Sampled Input Module = 12,000 rpm

Accuracy (Amplitude) Within ±0.33% of full-scale typical ±1% maximum up to 20 kHz ±2% maximum up to 40kHz Accuracy (Phase) Keyphasor Source: High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60) Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60) Integration Option allowed Order Onto 100 X; with precision of 0.1 x Speed Ratio 0.000000001 - 20,000 (up to 10 digits of resolution) Minimum Speed 50 rpm		<u> </u>
typical ±1% maximum up to 20 kHz ±2% maximum up to 40kHz Keyphasor Source: High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60) Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60) Integration Option allowed Order Onder On	nX (Additional Va	ıriable)
#2% maximum up to 40kHz Accuracy (Phase) High Speed Keyphasor		
High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60) Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60) Integration Option allowed Order Onder Ond		
High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60) Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60) Integration Option allowed Order 0.1 to 100 X; with precision of 0.1 x Speed Ratio 0.000000001 - 20,000 (up to 10 digits of resolution)	Accuracy	Keyphasor Source:
Order 0.1 to 100 X; with precision of 0.1 x Speed Ratio 0.000000001 - 20,000 (up to 10 digits of resolution)	(Phase)	Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60) Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM /
of 0.1 x Speed Ratio 0.000000001 – 20,000 (up to 10 digits of resolution)	Integration	Option allowed
(up to 10 digits of resolution)	Order	
resolution)	Speed Ratio	0.000000001 - 20,000
Minimum Speed 50 rpm		
	Minimum Speed	50 rpm

Acceleration Channel	
Maximum Speed	Keyphasor source:
	<u>High Speed Keyphasor =</u>
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
	60,000 rpm, when 12.5x < n orders ≤ 25x
	30,000 rpm, when 25x < n orders ≤ 50x
	15,000 rpm, when 50x < n orders ≤ 100x
	<u>Dynamic Input Module =</u>
	12,000 rpm
Amplitude Extrac	tion (Additional Variable)
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Integration	Option allowed
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Spectral Lines	100, 200, 400, 800, 1600, 3200
Frequency Span (Asynchronous)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz
Samples Per Rev (Synchronous)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
Number Of Revs (Synchronous)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
Number of Averages	Up to 128
Minimum Speed	50 rpm

Accele	Acceleration Channel	
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
Center Frequency and Bandwidth	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling) Bandwidth ≥ 0	

Case Expansion Channel	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum
Position	
Units	V
Direct	in
	mm
Composite (Additional Variable)
Units	in
	mm

Differential Expansion Channel

General Tab Properties

Probe Configuration

- 1. Single Channel Differential Expansion
- 2. Standard Single Ramp Differential Expansion Flat Section
- Standard Single Ramp Differential Expansion Ramp Section
- 4. Dual Ramp
- Non-Standard Single Ramp Differential Expansion
- 6. Complementary Input Differential Expansion

The desired Probe Configuration can be set for the Differential Expansion Channel.

Options 2-6 require the channel to also have a Composite Trended Variable added per Channel pair.

Position and Composite (Additional Variable)

Accuracy	Within ±0.33% of full-scale typical
	±2% maximum
Units	in
	mm
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01-5 Hz
Gap	
Units	V

Differential Expansion Channel		
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01-5 Hz	
Bandpass (Add	itional Variable)	
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Unit	in	
	mm	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass	0.0626-40,000 Hz	
Corner Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.	
High Pass Poles	1, 2, 4, 6, 8	
High Pass	0.0626 to 40,000	
Corner Frequency	(must be < LPF)	
nX (Additional	Variable)	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	

Differe	ntial Expansion Channel	
Accuracy	Keyphasor Source:	D
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)	A
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)	 (I
Integration	Option allowed	
Order	0.1 to 100 X; with precision of 0.1 x	
Speed Ratio	0.000000001 – 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum	Keyphasor source:	_
Speed	<u>High Speed Keyphasor =</u>	U
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x	
	60,000 rpm, when 12.5x < n orders ≤ 25x	
	30,000 rpm, when 25x < n orders ≤ 50x	_
	15,000 rpm, when 50x < n orders ≤ 100x	Lo Lo
	<u>Dynamic Input Module =</u>	F
	12,000 rpm	

Dynamic Pressure Channel	
Dynamic	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz
	±2% maximum up to 40 kHz
Accuracy	Keyphasor Source:
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)
Units	psi pp
	psi dpp
	psi rms
	mbar pp
	mbar dpp
	mbar rms
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.0626-40,000 Hz
	Must be greater than high pass frequency and below Upper Transducer Frequency Response.
High Pass Poles	1, 2, 4, 6, 8
High Pass Corner Frequency	User can set values below the low pass frequency.
	Range of .0625 to 39,999

Dynamic Pressure Channel

Frequency response of the transducer needs to be considered.

Bias	
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01-5.00 Hz
Bandpass	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz
	±2% maximum up to 40 kHz
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner	0.0626-40,000 Hz
Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.
High Pass Poles	1, 2, 4, 6, 8
High Pass Corner Frequency	User can set values below the low pass frequency.
	Range of 0.0625 to 39,999

Frequency response of the transducer needs to be considered.

Dynamic Pressure Channel		
1X and 2X (Defaul	t Variables)	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz	
	±2% maximum up to 40 kHz	
Accuracy	Keyphasor Source:	
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
nX (Additional Va	riable)	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz	
	±2% maximum up to 40	

kHz

Dynamic	Pressure Channel
Accuracy	Keyphasor Source:
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)
Order	0.1 to 100 X; with precision of 0.1 x
Minimum Speed	50 rpm
Maximum Speed	Keyphasor source:
	High Speed Keyphasor =
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
	60,000 rpm, when 12.5x < n orders ≤ 25x
	30,000 rpm, when 25x < n orders ≤ 50x
	15,000 rpm, when 50x < n orders ≤ 100x
	<u>Dynamic Input Module =</u>
	12,000 rpm
Amplitude Extrac	tion (Additional Variable)
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz

Dynamic Pressure Channel		
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Spectral Lines	100, 200, 400, 800, 1600, 3200	
Frequency Span (Asynchronous)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 2000, 40000 Hz	
Samples Per Rev (Synchronous)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096	
Number Of Revs (Synchronous)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024	
Number of Averages	Up to 128	
Minimum Speed	50 rpm	
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
Center Frequency and Bandwidth	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling) Bandwidth ≥ 0	
Process Variable		
Within +0.33% of full-scale		

Process Variable		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum	

Process Variable		
Input Options	4-20 mA 1-5 V 0-10 V -10-10 V	
Output Options	Custom units accepted. Upper and Lower Limits must be within 100,000 units of each other.	
Radial Vibration Channel		
Direct/Band	pass	
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Units	mil pp	
	μт рр	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.1-40,000 Hz; increments of 0.1 Hz (should be greater than 10 times High Pass Frequency)	
High Pass Poles	1, 2, 4, 6, 8	
High Pass Corner Frequency	0.1-40,000 Hz; increments of 0.1 Hz (should be less than 1/10 of Low Pass Frequency)	
Gap		
Units	V	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner	0.01-5.00 Hz	

Frequency

Radial Vibration Channel		
1X, 2X, SMAX		
1X/2X Accuracy	Within ±0.33% of full-scale typical	
(Amplitude)	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Accuracy	Keyphasor Source:	
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
SMAX Accuracy	Within ±5% of full-scale	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum	Keyphasor Source:	
Speed	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
nX		
Accuracy (Amplitude)	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	

Radial Vibration Channel	
Accuracy (Phase)	Keyphasor Source:
	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)
Order	0.1 to 100x; increments of 0.1x
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Minimum Speed	50 rpm
Maximum	Keyphasor source:
Speed	<u>High Speed Keyphasor =</u>
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
	60,000 rpm, when 12.5x < n orders ≤ 25x
	30,000 rpm, when 25x < n orders ≤ 50x
	15,000 rpm, when 50x < n orders ≤ 100x
	<u>Dynamic Input Module =</u>
	12,000 rpm
Amplitude Ext	traction
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Speed Ratio	0.000000001 – 20,000
	(up to 10 digits of resolution)

Radial Vibration Channel	
Samples Per Rev (Sync.)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
Number Of Revs (Sync.)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
Frequency Span (Async.)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz
Spectral Lines	100, 200, 400, 800, 1600, 3200
Number of Averages	Up to 128
Minimum Speed	50 rpm
Maximum	Keyphasor Source:
Speed	High Speed keyphasor = 120,000 rpm
	Dynamic Sampled Input Module = 12,000 rpm
Center Frequency and Bandwidth	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling)
	Bandwidth ≥ 0
Shaft Absolute-Direct	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz

Radial Vibration Channel	
Accuracy	Keyphasor Source:
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.0626-40,000 Hz; increments of 0.1 Hz
	(should be greater than 10 times High Pass Frequency)
High Pass Poles	1, 2, 4, 6, 8
High Pass Corner	User can set values below the low pass frequency.
Frequency	Range of .0625 to 39,999
Shaft Absolute	9-1X
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Minimum Speed	50 rpm

Radial Vibration Channel	
Maximum Speed	Keyphasor Source:
	High Speed keyphasor = 120,000 rpm
	Dynamic Sampled Input Module = 12,000 rpm

Eccentricity Peak to Peak / Direct	
Low Pass Poles	1
Low Pass Corner Frequency	0.41 Hz
Eccentricity Poles	1
Eccentricity Corner Frequency	15.6 Hz

Spee	ed Channel	
Speed		
Speed/Frequency	KPH modules:	
Signal Accuracy	0.017 to 100 rpm: ±0.1 rpm	
	101 to 10,000 rpm: ±100 rpm	
	10,001 to 120,000 rpm: ±0.01% of actual rotational speed	
	PAV/PAA/PAS/PAD/PVT modules:	
	1 to 100 ppm: ±0.1 rpm	
	101 to 5000 ppm: ±1 rpm (within 3 seconds)	
	5001 to 12,000 ppm: ±15 rpm (within 3 seconds)	
	Definitions	
	ppm = Pulses Per Minute	
	ppm = EPR * RPM	
	EPR = Events Per Revolution	
	"Within 3 seconds" = At higher ppms, the system requires time to settle to the designated accuracy specifications	
Top Scale	KPH modules:	
	Must be between 50 and 120,000 rpm, inclusive	
	PAV/PAA/PAS/PAD/PVT modules:	
	Must be between 50 and 12,000 rpm, inclusive	

Spe	ed Channel
Units	rpm
	cpm
	Hz
Gap	
Low Pass Corner Frequency	0.01-5Hz
Low Pass Poles	1, 2, 4, 6, 8
Reverse Speed	
Accuracy	Refer to Speed/Frequency Signa Accuracy
Top Scale	KPH modules:
	Must be between 50 and 120,000 rpm, inclusive
	PAV/PAA/PAS/PAD/PVT modules:
	Must be between 50 and 12,000 rpm, inclusive
Units	rpm
	cpm
	Hz
Speed Ratio	0.00005 - 20,000
	(up to 10 digits of resolution)
Speed Hysteresis	0 to 10
<u> </u>	1 to 10%

Datasheet			
	Speed Channel		
Reverse Peak	Reverse Peak Speed		
Measurement requires 2 transducers.			
Accuracy	Refer to Speed/Frequency Signal Accuracy		
Top Scale	KPH modules:		
	Must be between 50 and 120,000 rpm, inclusive		
	PAV/PAA/PAS/PAD/PVT modules:		
	Must be between 50 and 12,000 rpm, inclusive		
Units	rpm		
	cpm		
	Hz		
Speed Ratio	0.00005 - 20,000		
	(up to 10 digits of resolution)		
Speed Hysteresis	0 to 10		
% Difference	1 to 10%		
Number of Re	everse Rotations		
Top Scale	Bottom Scale < Top Scale < = 20,000		
Speed Ratio	0.00005 to 20,000		
	(must support up to 10 digits of precision)		
Speed Hysteresis	0 to 10		
% Difference	1 to 10%		
Rotor Accele	ration		

±20 rpm/min

100 to 9,999 (rpm/min)

Accuracy

Top Scale

	13/M5182 Rev.
	Speed Channel
Bottom Scale	-9,999 to -100 (rpm/min)
Unit	rpm/min
	cpm/min
	Hz/min (rpm/min)
Speed Ratio	0.00005 - 20,000
	(up to 10 digits of resolution)
Minimum Speed	1 to 120,000
Peak Speed	
Accuracy	Refer to Speed/Frequency Signal Accuracy
Top Scale	KPH modules:
·	Must be between 50 and 120,000 rpm, inclusive
	PAV/PAA/PAS/PAD/PVT modules:
	Must be between 50 and 12,000 rpm, inclusive
Units	rpm
	cpm
	Hz
Speed Ratio	0.00005 - 20,000
	(up to 10 digits of resolution)
Clamp Signal Below 1 rpm	Option allowed
Minimum Speed	1 to 120,000
Zero Speed	
	surement requires 2 sducers.

	Speed Channel
Accuracy	Refer to Speed/Frequency Signal Accuracy
Top Scale	10.0 to 99.9 rpm
Units	rpm
	cpm
	Hz
Second Transducer Source	Lists all available speed channels configured in system
Speed Ratio	0.00005 - 20,000
	(up to 10 digits of resolution)
Clamp Signal Below 1 rpm	Option allowed
% Difference	1 to 10%

Temperature Channel Direct	
Accuracy	Within ±1 degree typical
	±3 degrees maximum
Units	°F
	°C
Temperature Range	-200C-1370C depending on TC/RTD selection

	Thrust Channel
Position	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum
Unit	mil, mm

	Thrust Channel
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01-5Hz
Gap	
Unit	V
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01-5Hz
Bandpass (Ad	lditional Variable)
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Unit	mil pp
	μm pp
Low Pass Poles	1, 2, 4, 6, 8
Low Pass	0.0626-40,000 Hz
Corner Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.
High Pass Poles	1, 2, 4, 6, 8
High Pass	0.0626 to 40,000
Corner Frequency	(must be < LPF)

	Thrust Channel
Amplitude Ex	traction (Additional Variable)
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Unit	mil pp µm pp
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Minimum Speed	50 rpm
Maximum	Keyphasor Source:
Speed	High Speed keyphasor = 120,000 rpm
	Dynamic Sampled Input Module = 12,000 rpm
nX (Addition	ıl Variable)
Accuracy (Amplitude)	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Accuracy	Keyphasor Source:
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)
Unit	mil pp
	μm pp

	Thrust Channel
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Order	0.1 to 100 X; with precision of 0.1x
Minimum Speed	50 rpm
Maximum	Keyphasor source:
Speed	High Speed Keyphasor =
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
	60,000 rpm, when 12.5x < n orders ≤ 25x
	30,000 rpm, when 25x < n orders ≤ 50x
	15,000 rpm, when 50x < n orders ≤ 100x
	<u>Dynamic Input Module =</u>
	12,000 rpm

Spectral Band (Additional Variable)		
Unit	mil pp	
	μm pp	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	

Valve Position Channel	
Valve Position-Position	
Accuracy	Within ±0.33% of full-scale typical
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Units	% Open
	% Closed
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01-5.00 Hz

Valve Position-Direct (Default)	
Accuracy	Within ±0.33% of full-scale typical ±1% maximum
Units	V
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01-5.00 Hz

Velocity Channel	
Direct/Bandpass	
Accuracy	Within ±0.33% of full-scale typical
	±2% maximum
Integration	Option allowed
Units	in/s pk
	in/s rms
	mm/s pk
	mm/s rms

Velocity Channel		
Integrated Units	mil pp	
	μm pp	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner	0.0626-40,000 Hz	
Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.	
High Pass Corner Frequency	User can set values below the low pass frequency.	
	Range of .0625 to 39,999	

Frequency response of the transducer needs to be considered.

Bias	
Units	V
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01-5.00 Hz
1X and 2X	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical
	±2% maximum

Velocity Channel	
Accuracy	Keyphasor Source:
(Phase) [*]	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)
Integration	Option allowed
Speed Ratio	0.000000001 – 20,000
	(up to 10 digits of resolution)
Minimum Speed	50 rpm
Maximum Speed	Keyphasor Source:
	High Speed keyphasor = 120,000 rpm
	Dynamic Sampled Input Module = 12,000 rpm
nX (Additional Variable)	
Accuracy (Amplitude)	Within ±0.33% of full-scale typical
	±2% maximum

Velocity Channel		
Accuracy	Keyphasor Source:	
(Phase)	High Speed Keyphasor Within +/-1 degree maximum up to 20 kHz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
	Dynamic Input Module Within +/-1 degree maximum up to 200 Hz Event Rate (Events Per Rev * Running Speed in RPM / 60)	
Integration	Option allowed	
Order	0.1 to 100 X; with precision of 0.1 x	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum Speed	Keyphasor source:	
	<u>High Speed Keyphasor =</u>	
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x	
	60,000 rpm, when 12.5x < n orders ≤ 25x	
	30,000 rpm, when 25x < n orders ≤ 50x	
	15,000 rpm, when 50x < n orders ≤ 100x	
	<u>Dynamic Input Module =</u>	
	12,000 rpm	

Velocity Channel	
Amplitude Extrac	tion (Additional Variable)
Accuracy	Within ±0.33% of full-scale typical
	±2% maximum
Integration	Option allowed
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Spectral Lines	100, 200, 400, 800, 1600, 3200
Frequency Span (Asynchronous)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz
Samples Per Rev (Synchronous)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
Number Of Revs (Synchronous)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
Number of Averages	Up to 128
Minimum Speed	50 rpm
Maximum Speed	Keyphasor Source:
	High Speed keyphasor = 120,000 rpm
	Dynamic Sampled Input Module = 12,000 rpm
Center Frequency and Bandwidth	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling) Bandwidth ≥ 0

Recip Impulse Acceleration Channel	
Direct	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz
	±2% maximum up to 40 kHz
Integration	Not allowed
Units	g pk
	g rms
	m/s ² pk
	m/s² rms
Low Pass Poles	4
Low Pass Corner	30 to 40,000 Hz when subunit is not RMS
Frequency	40 to 40,000 Hz when subunit is RMS
	Low Pass Corner Frequency must be greater than or equal to (High Pass Corner Frequency * 4).
	Low Pass Corner Frequency must be greater than High Pass Corner Frequency.
	Bently Nevada recommends Low Pass Corner Frequency to be less than or equal to Upper Frequency Response.
High Pass Poles	4
High Pass Corner Frequency	3 to 3,000 Hz when subunit is not RMS
	10 to 3,000 Hz when subunit is RMS
Bias	
Units	V

Recip Impulse Acceleration Channel	
Low Pass Poles	1
Low Pass Corner Frequency	0.01-5.00 Hz

Recip Piston Rod Channel	
Peak-Peak Displacement	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz
	±2% maximum up to 40 kHz
Integration	Not allowed
Units	mil pp
	μm pp
Low Pass Poles	2
Low Pass Corner Frequency	600 Hz
High Pass Poles	2
High Pass Corner Frequency	1 Hz
Position Magnitude	
Accuracy	Within ±1 % of the lowest configurable full-scale range
Integration	Not allowed
Units	mil
	μm
Speed Ratio	0.00005 to 20,000

(up to 10 digits of resolution)

	137M5182 Rev. 1
Red	cip Piston Rod Channel
Minimum Speed	If (50 / Speed Ratio < 1): 1
	Otherwise: 50 / MultiEventRatio
Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm
Position Ang	le
Accuracy	Within ±3°
Integration	Not allowed
Units	Degrees
Speed Ratio	0.00005 to 20,000
	(up to 10 digits of resolution)
Minimum	If (50 / Speed Ratio < 1): 1
Speed	Otherwise: 50 / MultiEventRatio
Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm
Crank Angle	
Accuracy	Within ±3°
Integration	Not allowed
Units	Degrees
Speed Ratio	0.00005 to 20,000
	(up to 10 digits of resolution)
Minimum Speed	If (50 / Speed Ratio < 1):1
	Otherwise: 50 / MultiEventRatio

Red	cip Piston Rod Channel		
Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm		
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm		
Gap			
Accuracy	Within ±1 %		
Units	V		
Low Pass Poles	1		
Low Pass Corner Frequency	0.09 Hz		
Average Pist	ton Position		
Accuracy	Within ±1 %		
Units	mil		
	μm		
Low Pass Poles	1		
Low Pass Corner Frequency	0.09 Hz		
Instantaneo	us Piston Position		
Accuracy	Within ±1%		
Units	mil		
	μm		
Speed Ratio	0.00005 to 20,000		
	(up to 10 digits of resolution)		
Minimum	If (50 / Speed Ratio < 1):1		
Speed	Otherwise: 50 / MultiEventRatio		

Recip Piston Rod Channel		
Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm	
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm	
Instantaneo	us Probe Gap	
Accuracy	Within ±1%	
Units	V	
Speed Ratio	0.00005 to 20,000	
	(up to 10 digits of resolution)	
Minimum	If (50 / Speed Ratio < 1):1	
Speed	Otherwise: 50 / MultiEventRatio	
Max Speed	When Keyphasor source is a High Speed Keyphasor: 120,000 rpm	
	When Keyphasor source is a Dynamic Sampled Input Module: 12,000 rpm	
Re	ecip Cylinder Pressure	
Discharge P	ressure, Indicated	
Accuracy	Within ±1% of the configured top scale	
Units	psi (g), bar (g), kPa (g), kgf/cm ² (g)	
Low Pass Poles	2, 4, 6, 8	
Low Pass Corner	15X to (SamplesPerRev/2.56)X	
Frequency	(specified in orders of the running speed)	
Suction Pres	sure, Indicated	
Accuracy	Within ±1% of the configured top scale	

Recip Cylinder Pressure		
Units	psi (g), bar (g), kPa (g), kgf/cm²(g)	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Maximum P	ressure, Indicated	
Accuracy	Within ±1% of the configured top scale	
Units	psi (g), bar (g), kPa (g), kgf/cm ² (g)	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Minimum Pr	essure, Indicated	
Accuracy	Within ±1% of the configured top scale	
Units	psi (g), bar (g), kPa (g), kgf/cm²(g)	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Compressio	n Ratio	
Accuracy	Within ±2% of the configured top scale	
Units	N/A	

Re	ecip Cylinder Pressure	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Peak Crossh	ead Pin Compression	
Units	lbf or kN	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Peak Crossh	ead Pin Tension	
Units	lbf or kN	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	
Degrees of R	od Reversal	
Units	Degrees	
Low Pass Poles	Same as LowPassPoles of Discharge Pressure, Indicated measurement	
Low Pass Corner Frequency	Same as LowPassCornerFrequency of Discharge Pressure, Indicated measurement	

Recip Velocity			
Direct			
Units	If integration is false: in/s pk, mm/s pk, in/s rms, mm/s rms		
	If integration is true: mil pp, mil rms, µm pp, µm rms		
Low Pass Poles	1, 2, 4, 6, 8		
Low Pass	Peak: 10 Hz to 5,500 Hz		
Corner Frequency	RMS: 15 to 5,500 Hz		
High Pass Poles	1, 2, 4, 6, 8		
High Pass	Peak: 0.75 Hz to 400 Hz		
Corner Frequency	RMS: 0.75 Hz to 400 Hz		
Bias			
Units	V		
Low Pass Poles	1		
Low Pass Corner Frequency	0.01 Hz to 5.00 Hz		
1X			
Units	in/s pk, mm/s pk, in/s drms, mm/s drms		
2X			
Units	in/s pk, mm/s pk, in/s drms, mm/s drms		
Bandpass			
Units	If integration is false: in/s pk, mm/s pk, in/s rms, mm/s rms		
	If integration is true: mil pp, mil rms, µm pp, µm rms		
Low Pass Poles	1, 2, 4, 6, 8		

Recip Velocity		
Low Pass Corner Frequency	Peak: 10 Hz to 5,500 Hz RMS: 15 to 5,500 Hz	
High Pass Poles	1, 2, 4, 6, 8	
High Pass Corner Frequency	Peak: 0.75 Hz to 400 Hz RMS: 0.75 Hz to 400 Hz	

Condition Monitoring Module

Condition Monitoring Module (CMM)			
Power Consumption			
Maximum	14.2 W		
Typical	10.5 W		
Data Commun	ications		
2 Ethernet ports-utility or rear side	Independent Ethernet ports 1000/100/10 Base-T Auto- negotiation		
Connector	RJ-45		
Cable Length	100 meters (328 feet) max		
LEDs			
Module OK LED	Indicates when the module is functioning properly		
LINK LED	indicates when the module is communicating to the rest of the system		
Physical			
Required Rack Space	2 Slots		

Power Input Module

Power Input Module (PIM)			
Electrical			
Voltage Input +21 to +32 Vdc			
Current Draw			
3U 19" full load	7.1 Amps @ 24 Vdc		
6U 19" full load	10.5 Amps @ 24 Vdc		
Out of Range Protection	An undervoltage does not harm the PIM. An overvoltage causes the fuse to open.		
Physical			
Width	0.8" (2.03 cm)		
Height	5.2" (13.21 cm)		
Depth	9.67" (24.56 cm)		

Bridge

Bridge Module (BRG)		
Communications		
1 Fiber Optic Port for Bridge-to- Bridge Connection	10 Gbps – Single Mode, OS1/OS2 fiber required	
Connector	LC Duplex	
Supported Connections	Bridge-to-Bridge (point-to- point) ONLY, Network equipment such as switches, routers, and repeaters are not supported, proprietary protocol	
Cable Length	2,000 meters (6,560 feet) max	
Maximum Cable Signal Attenuation	6 db max	

Bridge Module (BRG)			
Bridge Modules LED Indicators			
Module OK LED	Indicates the operational status of the module.		
Link LED	Indicates communication status for the module to the rest of its chassis		
Bridge LED (Utility Side)	Indicates bridge-to-bridge connection status.		
Physical Characteristics			
Required Rack Space	1 Slot		
Power Consumption			
Typical	8.7 Watts		
Maximum	11.3 Watts		

Dynamic Input Modules

Dynamic Input Modules		
(-) (Prox, Accel, Velom)		
(-) (Prox, Accel, Seismic)		
(-) (Prox, Accel, Aero)		
(-) (Prox, Accel, DC LVDT)		
(+) (Prox, Accel, Velom)		
Speed and Keyphasor		
1-12,000 ppm (pulses per minute)		
Keyphasor Pulse Width must be greater than or equal to 10 micro- seconds.		
Power Consumption		
11 W		

Dynamic Input Modules		Dync	Dynamic Input Modules	
Typical	7.5 W	PVT	Prox/Accel (3-wire)	
(All Modules)			0-40 kHz 1% of Full Scale	
Accuracy and F	Frequency Response		Velom (2-wire)	
PAV	Prox/Accel (3-wire)		5 Hz-20 kHz 1% of Full Scale	
. , , ,	0-40 kHz 1% of Full Scale		Recommended top scale	
	Velom (2-wire)		= 1 in/s to meet 1% accuracy	
	5 Hz-20 kHz 1% of Full Scale		20-40 kHz 2% of Full Scale	
	Recommended top scale = 1 in/s to meet 1%	Dynamic Input	s	
	accuracy	Analog Input	See Input Module Sensors	
	20-40 kHz 2% of Full Scale		and Channels on page 21.	
PAS	Prox/Accel (3-wire)	Channels Supported	4 Dynamic Inputs	
	0-40 kHz 1% of Full Scale	Sampling Rate	102.4 kHz	
	Seismic (2-wire)		Impedance (Typical)	
	5 Hz-20 kHz 1% of Full Scale	PAV	Prox/Accel (3-wire)	
	20-40 kHz 2% of Full Scale	FAV	10 kΩ	
PAA	Prox/Accel (3-wire)	PAS	Prox/Accel (3-wire)	
	0-40 kHz 1% of Full Scale Aero (4-wire)	TAG	10 kΩ	
			Seismic (2-wire)	
	5 Hz-20 kHz 1% of Full Scale		10 kΩ	
	20-40 kHz 2% of Full Scale	PAA	Prox/Accel (3-wire)	
PAD	Prox/Accel (3-wire)	1700	10 kΩ	
	0-40 kHz 1% of Full Scale		Aero (4-wire)	
	DC LVDT (4-wire)		100 kΩ	
	5 Hz-20 kHz 1% of Full Scale	PAD	Prox/Accel (3-wire)	
	20-40 kHz 2% of Full Scale	. , , , ,	10 kΩ	
			DC LVDT (4-wire)	
			1 ΜΩ	
		PVT	Prox/Accel (3-wire)	

10 kΩ

Dynamic Input Modules		
Input Interface Sig	gnal Range [V]	
PAV	Prox/Accel (3-wire)	
	Min22, Max. 0	
	Velom (2-wire)	
	Min24, Max2	
PAS	Prox/Accel (3-wire)	
	Min22, Max. 0	
	Seismic (2-wire)	
	Min14, Max. 0	
PAA	Prox/Accel (3-wire)	
	Min22, Max. 0	
	Aero (4-wire)	
	Min22, Max. 0	
PAD	Prox/Accel (3-wire)	
	Min22, Max. 0	
	DC LVDT (4-wire)	
	Min10, Max. 10	
PVT	Prox/Accel (3-wire)	
	Min. 0, Max. 24	
	Velom (2-wire)	
	Min. 2, Max. 24	
Outputs		
Analog Buffered Transducer (BTO)	Short circuit protected output signal available through BTO connector on public and utility side.	

Dynamic Input Modules		
BTO Accuracy	AC	
	> 0 to < 10 kHz, ±1% of input signal	
	10 kHz to < 20 kHz, ±2% of input signal	
	20 kHz to < 30 kHz, ±4% of input signal	
	30 kHz to ≤ 40 kHz, ±6% of input signal	
	<u>DC</u>	
	±100 mV over voltage range of Input Module	
BTO Output Impedance	500 Ω	
BTO Connector	650/BTCDI CO Tendence report report the first	

This is a true analog signal from the input, not digital to analog reconstitution of the input signal.Some Transducers have an offset BTO bias.

Transducer Power		
PAV	Prox/Accel (3-wire)	
	-24 VDC, Max. 40 mA	
	Velom (2-wire)	
	3.3 mA (Constant current)	
PAS	Prox/Accel (3-wire)	
	-24 VDC, Max. 40 mA	
PAA	Prox/Accel (3-wire)	
	-24 VDC, Max. 40 mA	
	Aero (4-wire)	
	-24 VDC, Max. 40 mA	

Dynam	ic Input Modules
PAD	Prox/Accel (3-wire)
	-24 VDC, Max. 40 mA
	DC LVDT (4-wire)
	-10 to 10 VDC, max. 40 mA
PVT	Prox/Accel (3-wire)
	24 VDC, Max. 33 mA
	Velom (2-wire)
	9.5 mA (Typical)
LEDs	
Channel Status	1 per input channel indicates when the
(Rear Utility side only)	connected sensor is in an OK condition
Module OK LED	Indicates when the
	module is functioning properly
System	indicates when the
Communication LED	module is communicating to the rest of the system
Physical	
Required Rack Space	1 Slot

Keyphasor Input Module

Keyphasor Module Inputs (KPH)	
Inputs	
Analog Input	 Proximitor (3-wire) Accelerometer (3-wire) Proximitor Keyphasor (3-wire) Magnetic Speed Pickups

Keyphaso	or Module Inputs (KPH)
Signal Conditio	ning
Speed / Frequency Signal Ranges	Input range of 1 to 120,000 cpm (0.017 to 2 kHz).
Non-Speed Dyn	namic Input Specifications
Analog Input	See Input Module Sensors and Channels on page 21.
Channels Supported	4 Dynamic Inputs
Sampling Rate	102.4 kHz
Accuracy and F	requency Response
KPH	Prox/Accel (3-wire)
	0-40 kHz 2% of Full Scale
Outputs	
Analog Buffered Transducer (BTO)	Short circuit protected output signal available through BTO connector on public and utility side.
BTO Accuracy	AC
	> 0 to < 10 kHz, ±1% of input signal
	10 kHz to < 20 kHz, ±2% of input signal
	20 kHz to < 30 kHz, ±4% of input signal
	30 kHz to ≤ 40 kHz, ±6% of input signal
	<u>DC</u>
	±100 mV over voltage range of Input Module
BTO Output Impedance	500 Ω

Keyphasor Module Inputs (KPH)

BTO Connector

When configured as an analog output, this is a true analog signal from the input and not a digital to analog reconstitution of the input signal. When configured as a processed output, this is a 5 V or 3.3 V compatible TTL signal with the same machine speed and phase as the input signal. Some Transducers have an offset BTO bias.

Keyphasor	
Transducer	
Power Supply	

-24 Vdc, 40 mA maximum per channel.

Power Supply	•
LEDs	
Channel Status LED (Rear Utility side only)	1 per input channel indicates when the connector sensor is in an OK condition
Module OK LED	Indicates when the module is functioning properly
LINK LED	indicates when the module is communicating to the rest of the system
Physical	
Required Rack Space	1 Slot

AC LVDT

Module Inputs	
Channels	4 differential AC signals from AC LVDT
Power Consumption	5.7 W typical, 10 W maximum

TC/RTD Temperature

Temperature		
Thermocouple (TC) Temperature		
Thermocouple	Type J, K, E, T	
Channel Supported	6	
RTD Temperature		
RTD Type	Pt100 (385), Pt100 (392), Ni120, Cu10	

Platinum RTD's with 0.00385 alphas are the worldwide industrial standard and are recommended for all applications.

Power Consumption		
Maximum	6 W	
Typical	3 W	
LEDs		
Channel Status LED (Rear Utility Side)	1 per unit channel indicates when the connected sensor is in an OK condition	
Module OK LED	Indicates when the module is functioning properly	
System Communication LED	Indicates when the module is communicating to the rest of the system	
Physical Characteristics		
Required Rack Space	1 Slot	

Recorder Output Module

Recorder Outputs		
Power Consumption		
Typical	6 Watts	
Maximum	11 Watts	
Front Panel LEI	Os	
Module OK LED	Indicates when the module is functioning properly	
Channel OK LEDs	Indicates when the recorder channels are functioning properly	
Outputs		
Output Types	4 to 20 mA range across load	
	1 to 5 V range across load	
	0 to 10 V range across load	
Signal Load for Current Output	600 Ω or lower	
Signal Load of Voltage Output	100 kΩ or higher	
Maximum Current Load	22 mA	
Short Circuit Protection	A short circuit on any recorder output will not impact adjacent recorder outputs.	
Maximum Output error	1% of signal output range	

defined for the measurement scaled over the configured output range. Clamp Output A user-configured output level used to indicate an invalid status of the associated measurement or a detected fault within the Recorder channel or wiring. 4 mA to 20 mA Output Type Range 4 to 20 mA range across load When configured for a 4-20 mA output, the recorder channel supports the extended output range of 3.8 mA to 20.5 mA to align	Recorder Outputs	
proportional to full-scale range defined for the measurement scaled over the configured output range. Clamp Output A user-configured output level used to indicate an invalid status of the associated measurement or a detected fault within the Recorder channel or wiring. 4 mA to 20 mA Output Type Range 4 to 20 mA range across load When configured for a 4-20 mA output, the recorder channel supports the extended output range of 3.8 mA to 20.5 mA to align with the NAMUR	Output Characte	ristics
configured output level used to indicate an invalid status of the associated measurement or a detected fault within the Recorder channel or wiring. 4 mA to 20 mA Output Type Range 4 to 20 mA range across load When configured for a 4-20 mA output, the recorder channel supports the extended output range of 3.8 mA to 20.5 mA to align with the NAMUR	Signal Output	proportional to full-scale range defined for the measurement scaled over the configured
Range 4 to 20 mA range across load When configured for a 4-20 mA output, the recorder channel supports the extended output range of 3.8 mA to 20.5 mA to align with the NAMUR	Clamp Output	configured output level used to indicate an invalid status of the associated measurement or a detected fault within the Recorder channel or
range across load When configured for a 4-20 mA output, the recorder channel supports the extended output range of 3.8 mA to 20.5 mA to align with the NAMUR	4 mA to 20 mA Out	out Type
configured for a 4-20 mA output, the recorder channel supports the extended output range of 3.8 mA to 20.5 mA to align with the NAMUR	Range	range across
		configured for a 4-20 mA output, the recorder channel supports the extended output range of 3.8 mA to 20.5 mA to align with the NAMUR
		with the NAMUR

Recorder Outputs		
Lower limit	4 mA (If measurement bottom-scale, analog output limited to 3.8 mA minimum)	
Upper limit	20 mA (If measurement > top-scale, analog output limited to 20.5 mA maximum)	
Clamp Options	2 mA, 22 mA, or any level within the 4 mA to 20 mA output range	
Voltage range	0 to 12 Vdc	
1 V to 5 V Output	Туре	
Range	1 to 5 V range across load	
Lower limit	1 V (If measurement < bottom- scale, analog output limited to 1 V minimum)	
Upper limit	5 V (If measurement > top-scale, analog output limited to 5 V maximum)	
Clamp Options	0.5 V or any level within the 1 V to 5 V range	
0 V to 10 V Output Type		
Range	0 to 10 V range across load	

Recorder Outputs	
Lower limit	0 V (If measurement < bottom- scale, analog output limited to 0 V minimum)
Upper limit	10 V (If measurement > top-scale, analog output limited to 10 V maximum)
Clamp Options	Any level within the 0 V to 10 V range

Isolated Process Variable / Discrete Input (PVD)

Isolated PV / Discrete Input (PVD)	
Power Cons	umption
Typical	4.5 W
Maximum	6.5 W
Characteris	tics
Channels	6
Isolation	500 V Channel to System and 250 V Channel to Channel isolation
Process Var	iable 4-20 mA Input
Process Variable Input (Current)	4 to 20 mA
Process Variable Input (Voltage)	-10 to 10 Vdc 0 to 10 Vdc 2 to 10 Vdc 0 to 5 Vdc 1 to 5 Vdc -10 to 0 Vdc

Discrete Input	
Discrete Input	Dry Contact, Internally Wetted
	Wetted Contact, 0 to 10 Vdc

Electromagnetic Relay (EMR)

Electromagnetic Relay (EMR)		
Power Consump	otion	
Typical	6 watts	
Maximum	11 watts	
Characteristics		
Туре		echanical Single- ıble-Throw
Number of Relay Outputs	8	
Environmental	Epoxy Se	aled
Operation	for Norm	ny is configurable ally De-Energized ally Energized
Contact Rating	for Stando	ard Systems
Minimum Switch Current	ed	100 mA
DC Maximum Switched Current		4 A @ 30 Vdc
DC Minimum Switched Voltage		5 Vdc
DC Maximum Switched Voltage		30 Vdc
AC Maximum Switched Voltage		250 Vrms
AC Maximum Switched Current		4 A

Electromagnetic Relay (EMR)	
Maximum Switched Power	180 W or 1800 VA

Contact Rating for Hazardous Area Systems		
Maximum Switched Current	4 A	
DC Maximum Switched Voltage	30 Vdc	
AC Maximum Switched Voltage	160 Vrms	

Solid State Relay (SSR)

Solid State Relay (SSR)			
Power Consump	Power Consumption		
Typical	5 watts		
Maximum	9 watts		
Characteristics			
Туре	Solid Stat	te Single-Pole, Throw	
Number of Relay Outputs	8		
Environmental	Plastic Encapsulated		
Arc Suppressor	150 Vdc, installed standard		
Maximum Cycling Rate	1 Hz		
Operation	Each relay is configurable for Normally De-Energized or Normally Energized		
Switching Properties	Limited to non-inductive loads		
Contact Rating for Standard Systems			
Current Range		0.0 1-125 mA	

Solid State Relay (SSR)		
DC Maximum Switched Current	125 mA @ 125 Vdc	
Voltage Range	1-125 Vdc	
Maximum Switched Power	650 mW	
Contact Rating for Hazardous Area Systems		
Current Range	0.0 1-125 mA	
Voltage Range	1-50 Vdc	

10.4" Hazardous Area Display

10.4" Hazardous Area Display		
Part Number	120M8155-01	
Warranty	1 Year	
Features		
Video Interface	VGA	
Touch Screen Type	Resistive Touch Screen	
Cable Interface	Serial	
Control Settings	Front panel button	
Mounting Styles	Panel Mount, 19" EIA Rack Mount, and Independent Mount	
Power		
Voltage	24 Vdc nominal voltage range 10 to 28 Vdc	
Operating Current	Less than 500 mA	

10.4" Hazardous Area Display		
Physical Chard	ıcteristics	
Dimensions	15.25 x 9.8 x 1.93 in (387.4 x 248.9 x 49 mm)	
Environmental	Limits-Indoor Use Only	
IP Rating	Designed for IP54 ingress protection against dust and water spray to the front only.	
Operating Temperature	-20 to 65°C (-4 to 149°F)	
Standards and Certifications		
Refer to External Display Datasheet (154M8401)		

15" Hazardous Area Display

15" Hazardous Location Display (for Class 1 Div 2) CSA/NRTL/C			
Part Number	102М8950		
Warranty	1 Year		
Features	Features		
Video Interface	VGA and DVI-D		
Touch Screen Type	5-Wire Resistive Touch Screen		
Touch Screen Interface	Serial and USB-B		
Control Settings	Front panel button		
Mounting Styles	Panel Mount and 19" EIA Rack Mount		
Power			
Voltage	24 Vdc nominal voltage range 12 to 24 Vdc		
Operating Current	~100 mA		
Physical Characteristics			
Dimensions	16.61 x 13.31 x 2.68 in (422 x 338 x 68 mm)		
Environmental Limits-Indoor Use Only			
IP Rating	IP65 ingress protection against dust and water spray compliant to the front only.		
Operating Temperature	-20 to 60°C (-4 to 140°F)		
Standards and Certifications			
Refer to External Display Datasheet (154M8401)			

21.5" Industrial Display

21.5" Industrial Display		
Part Number	150M1466	
Warranty	1 Year	
Features		
Video Interface	VGA and DVI-D	
Touch Screen Type	Projected Capacitive Touch Screen	
Touch Screen Interface	USB-B and Serial	
Control Settings	Control buttons on rear panel	
Mounting Styles	Panel Mount and 19" EIA Rack Mount	
Power		
Voltage	24 Vdc nominal voltage range 22 to 26 Vdc	
Operating Current	≈ 200 mA	
Physical Chard	ıcteristics	
Dimensions	21.98 x 13.77 x 1.88 in (558.4 x 349.8 x 47.7 mm)	
Environmental	Limits-Indoor Use Only	
IP Rating	IP66 ingress protection against dust and water spray compliant to the front only.	
Operating Temperature	-30 to 70°C (-22 to 158°F)	
Storage Temperature	-40 to 75°C (-40 to 167°F)	
Ambient Relative Humidity	10 to 90% non-condensing	

21.5" Industrial Display

Standards and Certifications

Refer to External Display Datasheet (154M8401)

Industrial Computer for Display

CPU Module		
CPU	Intel Atom processor E3845 (quad-core, 1M cache, 1.91 GHz)	
System Memory	4 GB	
Storage	SD 3.0 (SDHC/SDXC) 128 GB	
Display	Intel HD Graphics 4000	
Peripherals		
USB	2 - USB-A 2.0	
VGA	Resolution up to 1920 x 1200 pixels at 75 Hz HDDB-15F port	
DisplayPort	Resolution up to 2560 x 1600 pixels at 60 Hz receptacle	
Ethernet	4 – Auto-sensing 10/100/1000 Mbps RJ45 ports Magnetic Isolation Protection 1.5 kV	
Serial	2 - RS-232/422/485 DB9M ports	
Power		
Voltage	12/24 Vdc (11.4 to 36 Vdc)	
Power	Less than 30 W (nominal)	
Physical Characteristics		
Weight	1.75 kg (3.86 lbs.)	
Dimensions	132 x 122 x 87 mm (5.20 x 4.81 x 3.43 in.)	

CPU Module		
Environmental Limits-Indoor Use Only		
Operating Temperature	-40 to 70°C (-40 to 158°F)	

Standards and Certifications

Refer to External Display Datasheet (154M8401)

Compliance and Certifications FCC

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

EMC

European Community Directive:

EMC Directive 2014/30/EU

Standards:

EN 61000-6-2; Immunity for Industrial Environments EN 61000-6-4; Emissions for Industrial Environments

Electrical Safety

European Community Directive:

LV Directive 2014/35/EU

Standards:

EN 61010-1; EN 61010-2-201;

RoHS

European Community Directive:

RoHS Directive 2011/65/EU

Cyber Security

Designed to meet IEC 62443-4-2

*Maritime

ABS Rules for Condition of Classification, Part 1

- · Steel Vessels Rules
- · Offshore Units and Structures

*Recorder Output module, Bridge module, and 6U systems approvals pending

Functional Safety

SIL 2

See the SIL User Guide (134M0398) for details regarding SIL implementation.

Hazardous Area Approvals

For the detailed listing of country and product-specific approvals, refer to the *Approvals Quick Reference Guide* (108M1756).

For additional technical documentation, please log in to bntechsupport.com and access the Bently Nevada Media Library.

cNRTLus

Class I, Zone 2: AEx/Ex ec nC IIC T4 Gc; Class I, Zone 2: AEx/Ex nA nC IIC T4 Gc; Class I, Division 2, Groups A, B, C, D T4; Class I, Division 2, Groups A, B, C, D T4 (N.I.);

T4 @ Ta = -30° C to $+70^{\circ}$ C (-22° F to $+158^{\circ}$ F)

ATEX/IECEX

Ex | 13 G Ex ec nC IIC T4 Gc Ex nA nC IIC T4 Gc

T4 @ Ta = -30° C to $+70^{\circ}$ C (-22° F to $+158^{\circ}$ F)

Ordering Information 60R_SYSTEM-Packaged Chassis

To begin your order, contact your sales representative.

Ordering Option	Description
A-Chassis T	уре
01	3U Rack Mount Chassis
02	3U Panel Mount Chassis
03	3U Bulkhead Mount Chassis
04	6U Rack Mount Chassis
05	6U Panel Mount Chassis
06	6U Bulkhead Mount Chassis
B-Power Input	
02	Dual DC Power Input Modules
C-Display	
00	No Display
D-Agency Approvals	
00	None
01	CSA/NRTL/C (CLASS 1 DIV 2)
02	Multi (CSA, ATEX, IECEX)
XXX	Country Specific Approvals
E – Functional Safety System	
NO	Standard System
YES	Functional Safety System
All obaccis orders will include the following	

All chassis orders will include the following modules:

• PIM • SIM

PPM

CMM

Two PIM modules are included with the Orbit 60 Chassis.

Specific PIM modules are exclusively used with either the 3U or 6U chassis. The 3U and 6U PIMs are not interchangeable.

3U Power Input Module

Ordering Option	Description
60R/PIM01-AAA-B • Power Input Module	

AAA - Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL

6U Power Input Module

Ordering Option	Description
60R/PIM02-AAA-B • Power Input Module	

AAA - Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL

System Interface Module

Ordering Option	Description
60R/SIM01-AAA-B • Sy Module	rstem Interface

AAA – Hazardous Area Certifications

No Hazardous Area
CSA/NRTL/C (Class I, Div 2)
Multi (CSA, ATEX, IECEx)
Country Specific Approvals
No SIL

For an Orbit 60 safety system, SIL certification for the SIM is not required.

Communications Gateway Module

Ordering Option	Description
60R/CGW01-AAA-B • F Gateway	RJ-45 Ethernet Comm

AAA - Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B – SIL Level	
0	No SIL

Protection Processor Module

Ordering Option	Description
60R/PPM01- Module	AAA-B • Protection Processor

AAA - Hazardous Area Certifications

AAA Hazaradad Arda Gortingationid	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
2	SIL 2

Condition Monitoring Module

Ordering Option	n Description
60R/CMM01-AAA-B	
A A A	. A was a Cambidia artisma

AAA – Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B – SIL Level	
0	No SIL

Bridge Module

Ordering Option	Description
60R/BRG01-AAA-B • Bridge	
AAA – Hazardous Area Certifications	
00 No Hazardous Area	
01	CSA/NRTL/C (Class I, Div 2)

Ordering Option	Description
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
2	SIL 2

Industrial Bridge Fiber Cables

Ordering Option	Description
60X/BIC01-AA	
AA – Cable Length	
02	2 meters
03	3 meters
06	6 meters

PAV (Prox/Accel/Vel) Module

Ordering Option	Description
60R/INP01-A	AA-B
AAA – Haza	rdous Area Certifications
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
2	SIL 2

PAA (Prox/Accel/Aero) Module

Ordering Option	Description
60R/INP02-A	AAA-B

AAA - Hazardous Area Certifications

00 No Hazardous Area 01 CSA/NRTL/C (Class I, Div 2) 02 Multi (CSA, ATEX, IECEx) XXX Country Specific Approvals B - SIL Level	_	
01 CSA/NRTL/C (Class I, Div 2) 02 Multi (CSA, ATEX, IECEx)	B - SIL Level	
01 CSA/NRTL/C (Class I, Div 2)	XXX	Country Specific Approvals
1.0.1.0.20	02	Multi (CSA, ATEX, IECEx)
00 No Hazardous Area	01	CSA/NRTL/C (Class I, Div 2)
	00	No Hazardous Area

0	No SIL
2	SIL 2

PAS (Prox/Accel/Seismic) Module

Ordering Option	Description
60R/INP03-#	AAA-B

AAA - Hazardous Area Certifications

00	No Hazardous Area	
01	CSA/NRTL/C (Class I, Div 2)	
02	Multi (CSA, ATEX, IECEx)	
XXX	Country Specific Approvals	
B - SIL Level		
0	No SIL	
2	SIL 2	

PAD (Prox/Accel/DCLVDT) Module

Ordering Option	Description
60R/INP04-A	AAA-B

AAA - Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

B - SIL Level

0	No SIL
2	SIL 2

PVT (Prox/Accel/Velom)

Ordering Option	Description
60R/INP05-A	AAA-B

AAA – Hazardous Area Certifications

No Hazardous Area	
CSA/NRTL/C (Class I, Div 2)	
Multi (CSA, ATEX, IECEx)	
XXX Country Specific Approvals	

B - SIL Level

0	No SIL
2	SIL 2

Keyphasor Input Module

Ordering Option	Description
60R/INP06-AAA-B	
AAA – Hazardous Area Certifications	
00	No Hazardous Area

Ordering Option	Description
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
2	SIL 2

AC LVDT Input Module

Ordering Option	Description
60R/INP10-A	AA-B

AAA - Hazardous Area Certifications

B - SIL Level	
XXX Country Specific Approvals	
02	Multi (CSA, ATEX, IECEx)
01	CSA/NRTL/C (Class I, Div 2)
00	No Hazardous Area

0	No SIL
2	SIL 2

RTD / TC Temperature Module

Ordering Option	Description
60R/INP07	
AA – Hazardous Area Certifications	
00	No Hazardous Area

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XX	Country Specific Approvals
B - SIL Level	

Ordering Option	Description
0	No SIL
2	SIL 2

Isolated Process Variable / Discrete Input Module (PVD)

Ordering Option	Description
60R/INP09	

AAA - Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

B - SIL Level

0	No SIL
2	SIL 2

Recorder Output Module

Ordering Option	Description
60R/REC01-AAA-B	
AAA – Hazardous Area Certifications	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B – SIL Level	
0	No SIL
2	SIL 2

Electromechanical Relay Module

Ordering Option	Description
60R/RLY01-AAA-B	

AAA – Hazardous Area Certifications

00	No Hazardous Area	
01	CSA/NRTL/C (Class I, Div 2)	
02	Multi (CSA, ATEX, IECEx)	
XXX	Country Specific Approvals	
B – SIL Level		
0	No SIL	
1	SIL 1	

Solid State Relay Module

Ordering Option	Description
60R/RLY02-AAA-B	

AAA – Hazardous Area Certifications

AAA TIGZGIGGGS AFEG CETTIIICGTIOTIS	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B – SIL Level	
0	No SIL
1	SIL 1

External Display

Bently Nevada offers three display systems with different resolution, capabilities, mounting options, accessories, and certifications. Not all options are available for all displays.

60X/EXDAA-BB-CC	
AA – Display	

	60X/EXDAA-BB-CC	
01	10.4" Hazardous Area Display	
02	15" Hazardous Area Display (for Class 1 Div 2) CSA/NRTL/C	
04	21.5" Display	
BB – Ag	ency Approvals	
00	No Approval Certifications	
01	CSA/NRTL/C (Class 1 DIV 2) (only available for the 60X/EXD01 10.4 in display and 60X/EXD02 15 in display)	
02	Multi (CSA, ATEX, IECEX) (only available for the 60X/EXD01 10.4 in display)	
CC - Mc	ounting Options	
01	19" Rack Mount Panel	
02	Panel Mount Kit	
04	Independent Mount (only available for the 60X/EXD01 10.4 in display)	

Industrial Computer for Display

60X/CMP01-AA	
AA – Agency Approvals	
00 No Approval Certifications	
01 CSA/NRTL/C (Class 1 DIV 2)	
02	Multi (CSA, ATEX, IECEX)

Includes DIN Mounting Kit, 24 Vdc 90-Watt DIN Mountable Power Supply, USB Mouse, 24 Vdc Power Cable, 10' (3 m) Ethernet Cable. A 20' Ethernet cable accessory is available.

Front Panel Configurations

60X/CMP01-AA		
3U Front Pan	nel: SIM w/ No Display	
60R/PNL01	with options for country- specific codes	
3U Front Panel: No SIM & No Display		
60R/PNL03	with options for country- specific codes	
6U Front Panel: SIM w/ No Display		
60R/PNL07	with options for country- specific codes	
6U Front Panel: SIM w/ No Display		
60R/PNL09	with options for country- specific codes	

Accessories

Part Number	Description	
Dongles and	Dongles and Cables	
60X/BTC01 Buffered Transducer Breakout Kit		
3500 to Orbit 60 3U Chassis Retrofit Kits		
60X/RFT01	Rack-mounted Retrofit Kit	
60X/RFT02	Panel-mounted Retrofit Kit (Powder Coated)	
60X/RFT03	Panel-mounted Retrofit Kit (Stainless Steel)	

External Barriers

Part Number	Description
175502	3-pin Transducer Barrier
177241	2-pin Velomitor Barrier
175990 or 170M3559	Thermocouple Barrier
170M3559	RTD Barrier

External Galvanic Isolators

Part Number	Description
103M7134	3-pin Transducer Isolator
103M7134	2-pin Transducer Isolator
154M1361	Thermocouple Isolator
103M7138	RTD Isolator

Configuration Software

Part Number	Description
60X/CFG	Orbit Studio Configuration Software

AC/DC Industrial Power Supply

Ordering Option	Description
60X/XPS01-AAA • 240	Watt AC/DC
Industrial Power Supp	ly

AAA – Agency Approvals

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

60X/XPS02-AAA • 480 Watt AC/DC Industrial Power Supply

AAA – Agency Approvals

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

Miscellaneous

Part Number	Description
60X/KEY01	System Key
60R/BLK01	Blank: Module slot blank cover

Glossary of Terms

Accel	Acceleration
Aero	Aeroderivative
API	American Petroleum Institute
BRG	Bridge
ВТО	Buffered Transducer Output
CE	Case Expansion
CGW	Communication Gateway Module
CIDE	Complementary Input Differential Expansion
СММ	Condition Monitoring Module
СОМ	Common
DCM	Distributed Condition Monitoring
DCS	Distributed Control Systems
DR(DE)	Dual Ramp (Differential Expansion)
EGD	Ethernet Global Data
ESD	Emergency Shutdown Device
EIA	Energy Information Administration
EMR	electromechanical Relay
HAZLOC	Hazardous Location
HTVAS	High Temperature Velocity/Accel Sensor
1/0	Input/Output
IEPE	Integrated Electronics Piezo-Electric
ITC	Isolated Thermocouple
KPH	High Speed Keyphasor
LVDT	Linear Variable Differential Transformer
NC	Normally Closed
NEMA	National Electrical Manufacturers Association
NO	Normally Opened
NSSRDE	Non-Standard Single Ramp Differential Expansion
NTP	Network Time Protocol
OEM	Orginal Equipment Manufacturer
PAA	Prox, Accel, Aero
PAD	Prox, Accel, Displacement Module

Prox, Accel, Seismic

PAS

PAV Prox, Accel, Velom **PIM Power Input Module** PLC Programmable Logic Controller PPM **Protection Processing Module Prox** Proximitor **PVD** Isolated Process Variable, Discrete Input **PVT** Positive Voltage Transducer **REB** Roller Element Bearing **REC Recorder Outputs RMC** Remote Monitoring Center RST Reset **RTD** Resistance Temperature Detector SAI System Alarm Inhibit **SCDE** Single Channel Differential Expansion **SHLD** Shield SIL Safety Integrity Level SIM System Interface Module SSR Solid State Relay SSRDE Standard Single Ramp Differential Expansion SW Software TC Thermocouple TLS Transport Layer Security RTD/TC Resistance Temp Detector / Thermocouple TCP/IP Transmission Control Protocol Internet Protocol TM **Trip Multiply OEM** Orginal Equipment Manufacturer Velom Velomitor

Copyright 2025 Baker Hughes Company. All rights reserved.

Bently Nevada, Keyphasor, M2, Orbit 60, Proximitor, Seismoprobe, System 1, Velomitor and Orbit Logo are registered trademarks of Bently Nevada, a Baker Hughes business, in the United States and other countries. The Baker Hughes logo is a trademark of Baker Hughes Company. All other product and company names are trademarks of their respective holders. Use of the trademarks does not imply any affiliation with or endorsement by the respective holders.

Baker Hughes provides this information on an "as is" basis for general information purposes. Baker Hughes does not make any representation as to the accuracy or completeness of the information and makes no warranties of any kind, specific, implied or oral, to the fullest extent permissible by law, including those of merchantability and fitness for a particular purpose or use. Baker Hughes hereby disclaims any and all liability for any direct, indirect, consequential or special damages, claims for lost profits, or third party claims arising from the use of the information, whether a claim is asserted in contract, tort, or otherwise. Baker Hughes reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your Baker Hughes representative for the most current information.

The information contained in this document is the property of Baker Hughes and its affiliates; and is subject to change without prior notice. It is being supplied as a service to our customers and may not be altered or its content repackaged without the express written consent of Baker Hughes. This product or associated products may be covered by one or more patents. See Bently.com/legal.

1631 Bently Parkway South, Minden, Nevada USA 89423 Phone: 1.775.782.3611 (US) or Bently.com/support Bently.com

